【題目】如圖對稱軸為坐標軸,焦點均在軸上的兩橢圓
,
的離心率相同且均為
,橢圓
過點
且其上頂點恰為橢圓
的上焦點.
是橢圓
上異于
,
的任意一點,直線
與橢圓
交于
,
兩點,直線
與橢圓
交于
,
兩點.
(1)求橢圓,
的標準方程.
(2)證明:.
(3)是否為定值?若為定值.則求出該定值;否則,說明理由.
【答案】(1),
;(2)證明見解析;(3)是定值,
.
【解析】
(1)根據(jù)離心率以及橢圓過點
,可得
的方程,再根據(jù)
的上頂點橢圓
的上焦點,即可得
的方程;
(2)直線與橢圓方程分別聯(lián)立,分別利用弦長公式,計算即可得證.
(3)先確定直線的斜率與直線
的斜率關系,再聯(lián)立直線與橢圓方程,利用弦長公式計算
與
,化簡整理即可得結(jié)果.
(1)解:因為橢圓,
的焦點在
軸上,離心率為
,所以設橢圓
的方程為
.
由橢圓過點
,得
,
解得,所以橢圓
的方程為
,
所以橢圓的方程為
.
(2)證明:由(1)得,設點
,
,直線
的斜率為
,則直線
的方程為
,
聯(lián)立得
,
由根與系數(shù)的關系,得.
設點,聯(lián)立
得
,
由根與系數(shù)的關系,得.
所以,所以
,所以
,
所以.
(3)解:由(1)得,由(2)得
,設直線
的斜率為
,則直線
的方程為
.
所以.
由,得
,
聯(lián)立得
,
,
.
聯(lián)立得
,
,
.
由,得
,
所以,為定值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設是橢圓
的左焦點,直線:
與
軸交于
點,
為橢圓的長軸,已知
,且
,過
點作斜率為
直線
與橢圓相交于不同的兩點
,
(1)當時,線段
的中點為
,過
作
交
軸于點
,求
;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市有兩家共享單車公司,在市場上分別投放了黃、藍兩種顏色的單車,已知黃、藍兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場中隨機抽取5輛單車進行體驗,若每輛單車被抽取的可能性相同.
(1)求抽取的5輛單車中有2輛是藍色顏色單車的概率;
(2)在騎行體驗過程中,發(fā)現(xiàn)藍色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場中隨機地抽取一輛送技術(shù)部門作進一步抽樣檢測,并規(guī)定若抽到的是藍色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場中,并繼續(xù)從市場中隨機地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過(
)次.在抽樣結(jié)束時,已取到的黃色單車以
表示,求
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
,其中
為常數(shù),函數(shù)
和
的圖象在它們與坐標軸交點處的切線互相平行.
(1)求的值;
(2)若存在,使不等式
成立,求實數(shù)
的取值范圍;
(3)令,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(常數(shù)
).
(1)當時,求曲線
在
處的切線方程;
(2)討論函數(shù)在區(qū)間
上零點的個數(shù)(
為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設D是圓O:x2+y2=16上的任意一點,m是過點D且與x軸垂直的直線,E是直線m與x軸的交點,點Q在直線m上,且滿足2|EQ||ED|.當點D在圓O上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程.
(2)已知點P(2,3),過F(2,0)的直線l交曲線C于A,B兩點,交直線x=8于點M.判定直線PA,PM,PB的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率為
,且過點
.
(1)求橢圓的方程;
(2)設為橢圓
上任一點,
為其右焦點,點
滿足
.
①證明: 為定值;
②設直線與橢圓
有兩個不同的交點
,與
軸交于點
.若
成等差數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)判斷函數(shù)在區(qū)間
上零點的個數(shù);
(2)函數(shù)在區(qū)間
上的極值點從小到大分別為
,
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com