品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出n瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這n瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試.根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評分.
現(xiàn)設(shè)n=4,分別以a1,a2,a3,a4表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號(hào),并令X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,則X是對兩次排序的偏離程度的一種描述.
(Ⅰ)寫出X的所有可能值組成的集合S;
(Ⅱ)假設(shè)a1,a2,a3,a4等可能地為1,2,3,4的各種排列,求S中每個(gè)元素出現(xiàn)的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)X的可能取值集合為{0、2、4、6、8},在1、2、3、4中奇數(shù)與偶數(shù)各有兩個(gè),a2,a4中的奇數(shù)個(gè)數(shù)等于a1,a3中的偶數(shù)個(gè)數(shù),得到|1-a1|+|3-a3|與|2-a2|+|4-a4|的奇偶性相同,得到結(jié)論.
(Ⅱ)可以用列表或者樹狀圖列出1、2、3、4的一共24種排列,計(jì)算每種排列下的X的值,S中每個(gè)元素出現(xiàn)的概率.
解答: 解:由條件可知,本題的試驗(yàn)是:將1,2,3,4重新排序.
試驗(yàn)結(jié)果是:1,2,3,4的一個(gè)排列.
從而樣本空間為1,2,3,4的各種排列所組成的集合.
枚舉出1,2,3,4的排列共24種,并計(jì)算X值,得表如下:
1234X
排列112340
排列212432
排列313242
排列413424
排列514234
排列614324
排列721342
排列821434
排列923144
排列1023416
排列1124136
排列1224316
排列1331244
排列1431426
排列1532144
排列1632416
排列1734128
排列1834218
排列1941236
排列2041326
排列2142136
排列2242316
排列2343128
排列2443218
由上表易得:
(Ⅰ)X的可能值集合{0,2,4,6,8};
(Ⅱ)在等可能的前提下,根據(jù)古典概型的概率公式,有P(X=0)=
1
24
,P(X=2)=
3
24
P(X=4)=
7
24
,P(X=6)=
9
24
,P(X=8)=
4
24
點(diǎn)評:本題考查的知識(shí)點(diǎn)是古典概型概率計(jì)算公式,其中熟練掌握利用古典概型概率計(jì)算公式求概率的步驟,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=-an-(
1
2
n-1+2(n為正整數(shù)).
(1)令bn=2nan,求證數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)令cn=
n+1
n
an,Tn=c1+c2+…+cn.是否存在最小的正整數(shù)m,使得對于n∈N×都有Tn<2m-4恒成立,若存在,求出m的值;不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d大于0,且a2、a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=1-
1
2
bn
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試比較
1
bn
與Sn+1的大。⑶矣脭(shù)學(xué)歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一艘漁艇停泊在距岸9km處,今需派人送信給距漁艇3
34
km處的海岸漁站中,如果送信人步行每小時(shí)5km,船速每小時(shí)4km,問應(yīng)在何處登岸可以使抵達(dá)漁站的時(shí)間最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)P(x,y)到定點(diǎn)F(1,0)的距離與它到y(tǒng)軸的距離之差1.
(1)求點(diǎn)P的軌跡方程;
(2)過原點(diǎn)O作相互垂直的(1)中所求拋物線的兩條弦OA、OB,作OQ⊥AB垂足為Q,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=a•ex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行,求此時(shí)平行線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
alnx
x+1
+
b
x
,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x+2y-3=0.求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若n為大于1的自然數(shù),求證
1
n+1
+
1
n+2
+…+
1
2n
7
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
1+x2

(1)分別計(jì)算f(2)+f(
1
2
),f(3)+f(
1
3
),f(4)+f(
1
4
);
(2)歸納猜想一般結(jié)論,并給出證明;
(3)求值:f(1)+f(2)+f(3)+…+f(2013)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
).

查看答案和解析>>

同步練習(xí)冊答案