【題目】巳知集合P={},Q={},將PQ的所有元素從小到大依次排列構(gòu)成一個(gè)數(shù)列{},記為數(shù)列{}的前n項(xiàng)和,則使得<1000成立的的最大值為

A. 9 B. 32 C. 35 D. 61

【答案】C

【解析】

數(shù)列{an}的前n項(xiàng)依次為:1,2,3,22,5,7,23,…….利用分組成等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式求解.

數(shù)列{an}的前n項(xiàng)依次為:1,2,3,22,5,7,23,…….

利用列舉法可得:當(dāng)n=35時(shí),P∪Q中的所有元素從小到大依次排列,構(gòu)成一個(gè)數(shù)列{an},

所以數(shù)列{an}的前35項(xiàng)分別1,3,5,7,9,11,13,15,17,19,21,23,25,

…,69,2,4,8,16,32,64

Sn=29+ +=29+=967<1000

當(dāng)n=36時(shí),P∪Q中的所有元素從小到大依次排列,構(gòu)成一個(gè)數(shù)列{an},

所以數(shù)列{an}的前36項(xiàng)分別1,3,5,7,9,11,13,15,17,19,21,23,25,

…,71,2,4,8,16,32,64

Sn=30++=900+126=1026>1000

所以n的最大值35.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為緩解堵車現(xiàn)象,解決堵車問題,銀川市交警隊(duì)調(diào)查了甲乙兩個(gè)路口的車流量,在20196月隨機(jī)選取了14天,統(tǒng)計(jì)每天上午730-900早高峰時(shí)段各自的車流量(單位:百輛)得到如圖所示的莖葉圖,根據(jù)莖葉圖回答以下問題.

1)甲乙兩個(gè)路口的車流量的中位數(shù)分別是多少?

2)試計(jì)算甲乙兩個(gè)路口的車流量在之間的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)100個(gè)紅包,每個(gè)紅包金額為x元,.已知在每輪游戲中所產(chǎn)生的100個(gè)紅包金額的頻率分布直方圖如圖所示.

(1)求a的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);

(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在[1,2)的紅包個(gè)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2mx+2lnx,m∈R.

(1)探究函數(shù)f(x)的單調(diào)性;

(2)若關(guān)于x的不等式f(x)≤2+3x2在(0,+∞)上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnx

1)若a4,求函數(shù)fx)的單調(diào)區(qū)間;

2)若函數(shù)fx)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;

3)若x1、x2R+,且x1x2,求證:(lnx1lnx2)(x1+2x2≤3x1x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=,其中a>0,a≠1

(1)判斷的奇偶性,并證明你的結(jié)論;

(2)若關(guān)于的不等式||[﹣1,1]上恒成立,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射擊運(yùn)動(dòng)員進(jìn)行射擊訓(xùn)練,前三次射擊在靶上的著彈點(diǎn)剛好是邊長為的等邊三角形的三個(gè)頂點(diǎn).

(Ⅰ)第四次射擊時(shí),該運(yùn)動(dòng)員瞄準(zhǔn)區(qū)域射擊(不會(huì)打到外),則此次射擊的著彈點(diǎn)距的距離都超過的概率為多少?(彈孔大小忽略不計(jì))

(Ⅱ) 該運(yùn)動(dòng)員前三次射擊的成績(環(huán)數(shù))都在區(qū)間內(nèi),調(diào)整一下后,又連打三槍,其成績(環(huán)數(shù))都在區(qū)間內(nèi).現(xiàn)從這次射擊成績中隨機(jī)抽取兩次射擊的成績(記為)進(jìn)行技術(shù)分析.求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地草場(chǎng)出現(xiàn)火災(zāi),火勢(shì)正以每分鐘的速度順風(fēng)蔓延,消防站接到警報(bào)立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后分鐘到達(dá)救火現(xiàn)場(chǎng),已知消防隊(duì)員在現(xiàn)場(chǎng)平均每人每分鐘滅火,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用為每人每分鐘元,另附加每次救火所耗損的車輛、器械和裝備等費(fèi)用平均每人100元,而燒毀一平方米森林損失費(fèi)為30元.

1)設(shè)派名消防隊(duì)員前去救火,用分鐘將火撲滅,試建立的函數(shù)關(guān)系式;

2)問應(yīng)該派多少消防隊(duì)員前去救火,才能使總損失最少?(注:總損失費(fèi)=滅火勞務(wù)津貼+車輛、器械裝備費(fèi)+森林損失費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為正方形的對(duì)角線,給出下列命題:

為平面PAD的法向量;

為平面PAC的法向量;

為直線AB的方向向量;

④直線BC的方向向量一定是平面PAB的法向量.

其中正確命題的序號(hào)是______________

查看答案和解析>>

同步練習(xí)冊(cè)答案