某學校制定學校發(fā)展規(guī)劃時,對現(xiàn)有教師進行年齡狀況和接受教育程度(學歷)的調查,其結果(人數(shù)分布)如表:
學歷 | 35歲以下 | 35至50歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(1)用分層抽樣的方法在35至50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有l(wèi)人的學歷為研究生的概率;
(2)在該校教師中按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機抽取l人,此人的年齡為50歲以上的概率為,求x、y的值.
(1);(2)
【解析】
試題分析:(1)用分層抽樣得到學歷為本科的人數(shù),后面的問題是一個古典概型,試驗發(fā)生包含的事件是從5個人中容易抽取2個,事件數(shù)可以列舉出,滿足條件的事件是至少有1人的學歷為研究生,從列舉出的事件中看出結果.
(2)根據(jù)在抽樣過程中每個個體被抽到的概率相等,表示出年齡為50歲以上的概率,利用解方程思想解出x,y的值.
試題解析:(1)由題意得:抽到35歲至50歲本科生3人,研究生2人 2分
設本科生為研究生為
從中任取2人的所有基本事件共10個:
其中至少有一人的學歷為研究生的基本事件有七個:
所以至少有一人為研究生的概率為: 6分
(2)由題意得:
35至50歲中抽取的人數(shù)為
所以,解得: 12分
考點:1.分層抽樣;2.古典概型.
科目:高中數(shù)學 來源:2013-2014學年河北省高三下學期調研考試理科數(shù)學試卷(解析版) 題型:解答題
某高校在2012年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
(ⅰ)已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙恰有一人進入第二輪面試的概率;
(ⅱ)學校決定在這已抽取到的6名學生中隨機抽取2名學生接受考官L的面試,設第4組中有名學生被考官L面試,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河北省高三年級模擬考試理科數(shù)學試卷(解析版) 題型:解答題
在直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤α<π)。以原點為極點,x軸的正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為
ρcos2θ=4sinθ。
(1)求直線l與曲線C的平面直角坐標方程;
(2)設直線l與曲線C交于不同的兩點A、B,若,求α的值。
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河北省高三年級模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
某程序框圖如右圖所示,該程序運行后輸出的k的值是( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河北省高三年級模擬考試文科數(shù)學試卷(解析版) 題型:解答題
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為(為參數(shù)),點Q的極坐標為。
(1)化圓C的參數(shù)方程為極坐標方程;
(2)若直線過點Q且與圓C交于M,N兩點,求當弦MN的長度為最小時,直線的直角坐標方程。
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年河北省高三年級模擬考試文科數(shù)學試卷(解析版) 題型:選擇題
方體ABCD-A1B1C1D1中,E為棱BB1的中點(如圖1),用過點A,E,C1的平面截去該正方體的上半部分,則剩余幾何體的左視圖為
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省鷹潭市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:填空題
定義某種運算,運算原理如下圖所示,則式子的值為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com