已知、為橢圓的焦點(diǎn),且直線與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過(guò)的直線交橢圓于、兩點(diǎn),求△的面積的最大值,并求此時(shí)直線的方程。

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)依題意可設(shè)橢圓方程為,
代入消去并整理得
,

解得,
.    
(Ⅱ)設(shè)過(guò)的直線:,代入消去并整理得
,
,     
,
當(dāng),即時(shí),面積S最大,此時(shí)直線方程為
考點(diǎn):本題考查了橢圓方程的求法及直線與橢圓的位置關(guān)系
點(diǎn)評(píng):求解圓錐曲線的方程關(guān)鍵是求解a和b,可應(yīng)用已知條件得到關(guān)于兩個(gè)參量的方程或由性質(zhì)直接求得;求解解析幾何問(wèn)題也要注重對(duì)數(shù)學(xué)思想的應(yīng)用,從而使問(wèn)題求解方法明確、易解

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P、Q的直線對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知點(diǎn)F( 1,0),與直線4x+3y + 1 =0相切,動(dòng)圓M與及y軸都相切. (I )求點(diǎn)M的軌跡C的方程;(II)過(guò)點(diǎn)F任作直線l,交曲線C于A,B兩點(diǎn),由點(diǎn)A,B分別向各引一條切線,切點(diǎn) 分別為P,Q,記.求證是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線及點(diǎn),直線的斜率為1且不過(guò)點(diǎn)P,與拋物線交于A,B兩點(diǎn)。
(1) 求直線軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點(diǎn)C,D,證明:AD、BC交于定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線:的焦點(diǎn)為,、是拋物線上異于坐標(biāo)原點(diǎn)的不同兩點(diǎn),拋物線在點(diǎn)、處的切線分別為,且,相交于點(diǎn).

(1) 求點(diǎn)的縱坐標(biāo); 
(2) 證明:、、三點(diǎn)共線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的頂點(diǎn)與雙曲線的焦點(diǎn)重合,它們的離心率之和為,若橢圓的焦點(diǎn)在軸上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P(4,4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.

(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某海域有兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過(guò)魚(yú)群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。

(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),、兩島收到魚(yú)群在處反射信號(hào)的時(shí)間比為,問(wèn)你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
如圖,已知橢圓是橢圓的頂點(diǎn),若橢圓的離心率,且過(guò)點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得,且與橢圓相交于兩點(diǎn)(異于橢圓的頂點(diǎn)),設(shè)直線和直線的傾斜角分別是,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案