【題目】已知雙曲線的左、右焦點分別為,,點為左支上任意一點,直線是雙曲線的一條漸近線,點在直線上的射影為,且當取最小值5時,的最大值為( )

A. B. C. D. 10

【答案】A

【解析】

首先由雙曲線的定義及條件得到(定值),然后可采用幾何法、代數(shù)法兩種方法得到,最后再根據(jù)基本不定式求解即可.

由雙曲線的定義可知,

所以

,三點共線時,最小,

所以,

所以

由題意得

方法一:由的面積是為原點)的面積的2倍,,

,

所以的面積為

又由,

因為,所以,當且僅當,即時等號成立,

所以最大為

故選A.

方法二:因為直線為雙曲線的一條漸近線,

所以方程為.過左焦點與漸近線垂直的直線方程為,

,解得,所以

所以

又由,

因為,所以,當且僅當,即時等號成立,

所以最大為

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,橢圓上一點到兩焦點距離之差的最大值為4.

(1)求橢圓的標準方程;

(2)若點為橢圓上異于左右頂點,的任意一點,過原點的垂線交的延長線于點,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一個各個面上均涂有顏色的正方體鋸成個同樣大小的小正方體,從這些小正方體中任意取兩個,這兩個都恰是兩面涂色的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的頂點焦點為作相似橢圓

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】前些年有些地方由于受到提高的影響,部分企業(yè)只重視經(jīng)濟效益而沒有樹立環(huán)保意識,把大量的污染物排放到空中與地下,嚴重影響了人們的正常生活,為此政府進行強制整治,對不合格企業(yè)進行關閉、整頓,另一方面進行大量的綠化來凈化和吸附污染物.通過幾年的整治,環(huán)境明顯得到好轉,針對政府這一行為,老百姓大大點贊.

(1)某機構隨機訪問50名居民,這50名居民對政府的評分(滿分100分)如下表:

分數(shù)

頻數(shù)

2

3

11

14

11

9

請在答題卡上作出居民對政府的評分頻率分布直方圖:

(2)當?shù)丨h(huán)保部門隨機抽測了2018年11月的空氣質(zhì)量指數(shù),其數(shù)據(jù)如下表:

空氣質(zhì)量指數(shù)(

0-50

50-100

100-150

150-200

天數(shù)

2

18

8

2

用空氣質(zhì)量指數(shù)的平均值作為該月空氣質(zhì)量指數(shù)級別,求出該月空氣質(zhì)量指數(shù)級別為第幾級?(同一組數(shù)據(jù)用該組數(shù)據(jù)的區(qū)間中點值作代表,將頻率視為概率)(相關知識參見附表)

(3)空氣受到污染,呼吸系統(tǒng)等疾病患者最易感染,根據(jù)歷史經(jīng)驗,凡遇到空氣輕度污染,小李每天會服用有關藥品,花費50元,遇到中度污染每天服藥的費用達到100元.環(huán)境整治前的2015年11月份小李因受到空氣污染患呼吸系統(tǒng)等疾病花費了5000元,試估計2018年11月份(參考(2)中表格數(shù)據(jù))小李比以前少花了多少錢的醫(yī)藥費?

附:

空氣質(zhì)量指數(shù)(

0-50

50-100

100-150

150-200

200-300

空氣質(zhì)量指數(shù)級別

空氣質(zhì)量指數(shù)

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,M是線段EF的中點,二面角的大小為60°.

1)求證:平面BDE;

2)試在線段AC上找一點P,使得PFCD所成的角是60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地統(tǒng)計局就該地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500))

(1)求居民月收入在[2000,2500)的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進一步分析,則月收入在[3000,3500)的這段應抽多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱中,平面于點,點在棱上,滿足.

,求證:平面;

設平面與平面所成的銳二面角的大小為,若,試判斷命題的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設直線,.的坐標為.過點的直線的斜率為,且與,分別交于點,的縱坐標均為正數(shù)).

1)求實數(shù)的取值范圍;

2)設,求面積的最小值;

3)是否存在實數(shù),使得的值與無關?若存在,求出所有這樣的實數(shù);若不存在,說明理由.

查看答案和解析>>

同步練習冊答案