已知x0是函數(shù)f(x)=(
1
2
x+
1
1+x
的一個(gè)零點(diǎn),若x1∈(-∞,x0),x2∈(x0,-1),則(  )
A、f(x1)<0,f(x2)<0
B、f(x1)<0,f(x2)>0
C、f(x1)>0,f(x2)<0
D、f(x1)>0,f(x2)>0
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=(
1
2
x+
1
1+x
的一個(gè)零點(diǎn)即y=(
1
2
)x
與y=-
1
1+x
的交點(diǎn)的橫坐標(biāo);作圖求解.
解答: 解:函數(shù)f(x)=(
1
2
x+
1
1+x
的一個(gè)零點(diǎn)即
y=(
1
2
)x
與y=-
1
1+x
的交點(diǎn)的橫坐標(biāo);
在同一坐標(biāo)系內(nèi)分別作出y=(
1
2
)x
,y=-
1
1+x
的圖象如下,

由圖可得,f(x1)>0,f(x2)<0;
故選C.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與函數(shù)圖象的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠有許多形狀為直角梯形的鐵皮邊角料,如圖,上底邊長(zhǎng)為8,下底邊長(zhǎng)為24,高為20,為降低消耗,開(kāi)源節(jié)流,現(xiàn)在從這此邊角料上截取矩形鐵片(如圖中陰影部分)備用,則截取的矩形面積最大值為(  )
A、190B、180
C、170D、160

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將a、b、c、d四個(gè)小球放入三個(gè)不同盒子,每個(gè)盒子至少放一個(gè),且a、b不在同一個(gè)盒子中的方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率是
2
,則該雙曲線(xiàn)的漸近線(xiàn)方程是( 。
A、y=±
1
2
x
B、y=±
2
2
x
C、y=±x
D、y=±
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①三角形ABC中,若a2+b2-c2-ab=0,則C=60°;
②ax(x-1)<0(a≠0)的解集是(0,1);
③Sn是數(shù)列{an}的前n項(xiàng)和,若Sn=n2+1,則an=2n-1;
④Sn是數(shù)列{an}的前n項(xiàng)和,若Sn=2n-1,則數(shù)列{an}是等比數(shù)列.
其中正確命題的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示,且f(3)=f(8)=1,則不等式f(x2-2x)>1的解集為 ( 。
A、(-2,-1)∪(3,4)
B、(-2,1)
C、(-2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a≥1,f(x)=x3+3|x-a|,若函數(shù)f(x)在[-1,1]上的最大值和最小值分別記為M、m,則M-m的值為   C( 。
A、8
B、-a3-3a+4
C、4
D、-a3+3a+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若從區(qū)間(0,2)內(nèi)隨機(jī)取兩個(gè)數(shù),則這兩個(gè)數(shù)的和不小于3的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x2+(4cosθ)x-1在[1,
3
]上為增函數(shù),則θ的取值范圍是( 。
A、[2kπ-
3
,2kπ+
3
](k∈Z)
B、[2kπ-
π
6
,2kπ+
π
6
](k∈Z)
C、[2kπ+
π
3
,2kπ+
3
](k∈Z)
D、[2kπ-
π
3
,2kπ+
π
3
](k∈Z)

查看答案和解析>>

同步練習(xí)冊(cè)答案