現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加個游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率:

(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率:

(Ⅲ)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【命題意圖】本試題主要考查了

【參考答案】

【點(diǎn)評】應(yīng)用性問題是高考命題的一個重要考點(diǎn),近年來都通過概率問題來考查,且?汲P,對于此類考題,要注意認(rèn)真審題,從數(shù)學(xué)與實(shí)際生活兩個角度來理解問題的實(shí)質(zhì),將問題成功轉(zhuǎn)化為古典概型,獨(dú)立事件、互斥事件等概率模型求解,因此對概率型應(yīng)用性問題,理解是基礎(chǔ),轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X-Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試天津卷數(shù)學(xué)理科 題型:044

現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;

(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X-Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012天津理)現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加個游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率:

(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率:

(Ⅲ)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(天津卷解析版) 題型:解答題

現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;

(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.

設(shè)“這4個人中恰有i人去參加甲游戲”為事件

.

(1)這4個人中恰有2人去參加甲游戲的概率

(2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

(3)的所有可能取值為0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

隨機(jī)變量的數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊答案