【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
【答案】
(1)解:f(x)=4cosxsin(x+ )+a=2 sinxcosx+2cos2x+a= sin2x+cos2x+1+a=2sin(2x+ )+1+a,
∵sin(2x+ )≤1,
∴f(x)≤2+1+a,
∴由已知可得2+1+a=2,
∴a=﹣1,
∴f(x)=2sin(2x+ ),
∴T= =π.
(2)解:函數(shù)f(x)=2sin(2x+ ),
∴當(dāng)2kπ﹣ ≤2x+ ≤2kπ+ 時(shí),即kπ﹣ ≤x≤kπ+ ,k∈Z,函數(shù)單調(diào)增,
∴函數(shù)的單調(diào)遞增區(qū)間為[kπ﹣ ,kπ+ ,](k∈Z).
【解析】(1)利用兩角和公式和倍角公式對(duì)函數(shù)解析式化簡整理,利用函數(shù)的最大值求得a,進(jìn)而求得函數(shù)解析式和最小正周期.(2)利用正弦函數(shù)圖象的性質(zhì),求得函數(shù)遞增區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑OA為,它的最低點(diǎn)A距地面的高度忽略不計(jì).地面上有一長度為的景觀帶MN,它與摩天輪在同一豎直平面內(nèi),且.點(diǎn)P從最低點(diǎn)A處按逆時(shí)針方向轉(zhuǎn)動(dòng)到最高點(diǎn)B處,記.
(Ⅰ)當(dāng)時(shí),求點(diǎn)P距地面的高度PQ;
(Ⅱ)設(shè),寫出用表示y的函數(shù)關(guān)系式,并求y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長與底面多邊形的邊長相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為Tn , 問使Tn> 的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圍建一個(gè)面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長度為x(單位:m),修建此矩形場地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)= ,且f(x)在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=f(x)﹣a
(1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);
(2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個(gè)零點(diǎn)分別為x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(﹣x2+ax)ex , (x∈R,e為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)函數(shù)f(x)是否為R上的單調(diào)函數(shù),若是,求出a的取值范圍;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com