【題目】(本小題滿(mǎn)分12分)已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)求函數(shù)的極值.
【答案】(Ⅰ);(Ⅱ)當(dāng)時(shí),函數(shù)無(wú)極值.當(dāng)時(shí),函數(shù)在處取得極小值,無(wú)極大值.
【解析】
試題分析:(Ⅰ)先求a=2時(shí)的導(dǎo)函數(shù),然后求出x=1時(shí)的導(dǎo)函數(shù)即該點(diǎn)處的切線(xiàn)斜率,然后由點(diǎn)斜式求出切線(xiàn)方程.(Ⅱ)求出導(dǎo)函數(shù),因?yàn)楹袇?shù)a,所以結(jié)合導(dǎo)函數(shù)的零點(diǎn)與定義域區(qū)間端點(diǎn)的位置關(guān)系進(jìn)行分類(lèi)討論,從而得出函數(shù)的單調(diào)性,并由極值點(diǎn)的定義判斷出函數(shù)的極值.
試題解析:函數(shù)的定義域?yàn)?/span>,,
(Ⅰ)當(dāng)時(shí),,,
∴,,
∴在點(diǎn)處的切線(xiàn)方程為,
即
(Ⅱ)由,可知:
①當(dāng)時(shí),,函數(shù)為上的增函數(shù),函數(shù)無(wú)極值;②當(dāng)時(shí),由,解得;
∵時(shí),,時(shí),
∴在處取得極小值,且極小值為,無(wú)極大值.
綜上:當(dāng)時(shí),函數(shù)無(wú)極值.
當(dāng)時(shí),函數(shù)在處取得極小值,無(wú)極大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)C過(guò)點(diǎn)A(﹣ ,1),且與x2﹣3y2=1有相同的漸近線(xiàn).
(1)求雙曲線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)過(guò)雙曲線(xiàn)C的一個(gè)焦點(diǎn)作傾斜角為45°的直線(xiàn)l與雙曲線(xiàn)交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .
(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直四棱柱中,四邊形為梯形, ,且.過(guò)三點(diǎn)的平面記為, 與的交點(diǎn)為.
(I)證明: 為的中點(diǎn);
(II)求此四棱柱被平面所分成上下兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線(xiàn)都是母線(xiàn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿(mǎn)足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為T(mén)n , 問(wèn)使Tn> 的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數(shù)f(x)=lg(2x+a)的定義域?yàn)榧螩,滿(mǎn)足AC,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說(shuō)法: 1)f(x)在(﹣2,1)上是增函數(shù);
2)x=﹣1是f(x)的極小值點(diǎn);
3)f(x)在(﹣1,2)上是增函數(shù);
4)x=2是f(x)的極小值點(diǎn);
以上說(shuō)法正確的序號(hào)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com