【題目】已知拋物線:,過其焦點作斜率為1的直線交拋物線于,兩點,且線段的中點的縱坐標(biāo)為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不過原點且斜率存在的直線與拋物線相交于、兩點,且.求證:直線過定點,并求出該定點的坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為1的正方體中,點分別是棱的中點,是側(cè)面內(nèi)一點,若平面,則線段長度的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標(biāo);
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點為極點,以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過點與曲線交于不同兩點,的中點為,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
y(微克)
x(千克)
| ||||||
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中
(I)根據(jù)散點圖判斷,與,哪一個適宜作為蔬菜農(nóng)藥殘量與用水量的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)若用解析式
(Ⅲ)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點和,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當(dāng)點在圓上運(yùn)動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足(為坐標(biāo)原點),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點,求弦AB的長;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,O為頂點S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點,且.
(1)證明:平面PAC.
(2)求直線BC與平面PAC的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為實常數(shù))
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,求不等式的解集;
(3)若存在兩個不相等的正數(shù)、滿足,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com