【題目】如圖,已知四棱臺上、下底面分別是邊長為3和6的正方形,,且
底面,點,分別在棱,上.
(1)若是的中點,證明:;
(2若//平面,二面角的余弦值為,求四面體的體積

【答案】由題意得, A A 1 , A B , A D 兩兩垂直,以 A 為坐標原點, A B , A D , A A 1 所在直線分別為 x 軸 y 軸 z 軸,建立如圖下圖所示的空間直角坐標系,則相關(guān)各點的坐標為 A ( 0 , 0 , 0 ) , B 1 ( 3 , 0 , 6 ) , D ( 0 , 6 , 0 ) , D 1 ( 0 , 3 , 6 ) , Q ( 6 , m , 0 ) , 其中 m = B Q , 0 ≤ m ≤ 6 .

(1)若的中點,則于是所以.即
(2)由題意設(shè)知,是平面內(nèi)的兩個不共線向量.設(shè)是平面的一個法向量,則,取,又平面的一個法向量所以
而二面角P-QD-A的余弦值為 , 因此=解得.m=4或者m=8(舍去)此時Q(6,4,0)設(shè)=(0,-3,6)由此得點P因為PQ//平面ABB1A1且平面ABB1A1的一個法向量=(0,1,0)所以,·=0即,亦即得從而P(0,4,4,)于是將四面體ADPQ視為以ADQ為底面的三棱錐P-ADQ 則其高h=4故四面體ADPQ的體積




【解析】由題意得,兩兩垂直,以為坐標原點,所在直線分別為軸,建立如圖下圖所示的空間直角坐標系,則相關(guān)各點的坐標為其中.

(1)若的中點,則于是所以.即
(2)由題意設(shè)知,是平面內(nèi)的兩個不共線向量.設(shè)是平面的一個法向量,則,取,又平面的一個法向量所以
而二面角P-QD-A的余弦值為,因此=解得.m=4或者m=8(舍去)此時Q(6,4,0)設(shè)=(0,-3,6)由此得點P因為PQ//平面ABB1A1且平面ABB1A1的一個法向量=(0,1,0)所以,·=0即,亦即得從而P(0,4,4,)于是將四面體ADPQ視為以ADQ為底面的三棱錐P-ADQ 則其高h=4故四面體ADPQ的體積




【考點精析】通過靈活運用向量的三角形法則和平面向量的坐標運算,掌握三角形加法法則的特點:首尾相連;三角形減法法則的特點:共起點,連終點,方向指向被減向量;坐標運算:設(shè);;設(shè),則即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響了的綜合指標.根據(jù)相關(guān)報道提供的全網(wǎng)傳播2015年某全國性大型活動的“省級衛(wèi)視新聞臺”融合指數(shù)的數(shù)據(jù),對名列前20名的“省級衛(wèi)視新聞臺”的融合指數(shù)進行分組統(tǒng)計,結(jié)果如表所示.求:(1)現(xiàn)從融合指數(shù)在[4,5)和[7,8]內(nèi)的“省級衛(wèi)視新聞臺”中隨機抽取2家進行調(diào)研,求至少有1家的融合指數(shù)在[7,8]的概率;(2)根據(jù)分組統(tǒng)計表求這20家“省級衛(wèi)視新聞臺”的融合指數(shù)的平均數(shù).

組號

分組

頻數(shù)

1

[4,5)

2

2

[5,6)

8

3

[6,7)

7

4

[7,8]

3


(1)現(xiàn)從融合指數(shù)在[4,5)和[7,8]內(nèi)的“省級衛(wèi)視新聞臺”中隨機抽取2家進行調(diào)研,求至少有1家的融合指數(shù)在[7,8]的概率;
(2)根據(jù)分組統(tǒng)計表求這20家“省級衛(wèi)視新聞臺”的融合指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所 需要的檢測費用(單位:元),求X的分布列和均值(數(shù)學期望).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A.消耗1升汽油,乙車最多可行駛5千米
B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C.甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D.某城市機動車最高限速80千米/小時.相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個體積盡可能大的長方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則原工件材料的利用率為(材料利用率=

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據(jù)此估計,該模塊測試成績不少于60分的學生人數(shù)為(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0,+∞)的函數(shù)f(x),其導函數(shù)為f′(x),滿足:f(x)>0且 總成立,則下列不等式成立的是(
A.e2e+3f(e)<eπ3f(π)
B.e2e+3f(π)>eπ3f(e)
C.e2e+3f(π)<eπ3f(e)
D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x2cosx在 的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案