解:(1)m=2時,函數(shù)f(x)=)=2
|x-2|,故函數(shù)f(x)的單調增區(qū)間為(2,+∞),單調減區(qū)間為(-∞,2);
(2)f(x)=
,則f(x)的值域應是g(x)的值域的子集.
①當4≤m≤8時,f(x)在(-∞,4]上單調減,故f(x)≥f(4)=2
m-4 ,
g(x)在[4,m]上單調減,[m,+∞)上單調增,故g(x)≥g(m)=2m-8,
所以2
m-4≥2m-8,解得4≤m≤5或8≥m≥6.
②當m>8時,f(x)在(-∞,4]上單調減,故f(x)≥f(4)=2
m-4,g(x)在[4,
]單調增,[
,m]上單調減,[m,+∞)上單調增,g(4)=6m-24>g(m)=2m-8,
故g(x)≥g(m)=2m-8,所以2
m-4≥2m-8,解得m≥8
③0<m<4時,f(x)在(-∞,m]上單調減,[m,4]上單調增,故f(x)≥f(m)=1.
g(x)在[4,+∞)上單調增,故g(x)≥g(4)=8-2m,所以8-2m≤1,即
≤m<4.
④m≤0時,f(x)在(-∞,m]上單調減,在[m,4]上單調增,故f(x)≥f(m)=1.
g(x)在[4,+∞)上單調增,故g(x)≥g(4)=8-2m,所以8-2m≤1,即m≥
.(舍去)
綜上,m的取值范圍是[
,5]∪[6,+∞).
分析:(1)m=2時,函數(shù)f(x)=)=2
|x-2|,由此可得函數(shù)的單調區(qū)間;
(2)由題意可得f(x)的值域應是g(x)的值域的子集,再分4≤m≤8、m>8、0<m<4、m≤0四種情況,分別求出實數(shù)m的取值范圍,再取并集即得所求.
點評:本題主要考查函數(shù)的單調性的判斷,利用函數(shù)的單調性求函數(shù)的最值,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.