【題目】已知是定義在上的奇函數(shù),對(duì)任意的,均有.當(dāng)時(shí),,則( )

A. B. C. D.

【答案】C

【解析】

由f(x)=1﹣f(1﹣x),得 f(1)=1,確定f()=,利用f(x)是奇函數(shù),即可得出結(jié)論.

由f(x)=1﹣f(1﹣x),得 f(1)=1,

令x=,則f()=

當(dāng)x∈[0,1]時(shí),2f()=f(x),

∴f()=f(x),

即f()=f(1)=,

f()=f()=14,

f()=f()=14,

,

對(duì)任意的x1,x2∈[﹣1,1],均有(x2﹣x1)(f(x2)﹣f(x1))≥0

∴f()=,

同理f()=…=f(﹣)=f()=

f(x)是奇函數(shù),

∴f(﹣)+f(﹣)+…+f(﹣)+f(﹣

=﹣[f(﹣)+f()+…+f()+f()]=﹣,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為: ,(θ∈[﹣ , ]),曲線C: (t為參數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)C與C1相交于A,B,與C2相切于點(diǎn)Q,求|AQ|﹣|BQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(I)求證:直線DE⊥平面PAC.
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若對(duì)于恒成立,求實(shí)數(shù)的取值范圍

(2)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再把得到的圖象向右平移 個(gè)單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩超市同時(shí)開業(yè),第一年的全年銷售額為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為 (n2n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.

(1)求甲、乙兩超市第n年銷售額的表達(dá)式;

(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會(huì)出現(xiàn)在第幾年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:

他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是

A. 289 B. 1 024 C. 1 225 D. 1 378

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P={ },Q={ } ,

(1);

(2)若,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案