【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.
【答案】C
【解析】解:∵函數(shù)f(x)滿足f(x+1)=﹣f(x),故有f(x+2)=f(x),故f(x)是周期為2的周期函數(shù).再由f(x)是偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x2 , 可得當(dāng)x∈[﹣1,0]時(shí),f(x)=x2 , 故當(dāng)x∈[﹣1,1]時(shí),f(x)=x2 , 當(dāng)x∈[1,3]時(shí),f(x)=(x﹣2)2 .
由于函數(shù)g(x)=f(x)﹣kx﹣k有4個(gè)零點(diǎn),故函數(shù)y=f(x)的圖象與直線y=kx+k 有4個(gè)交點(diǎn),如圖所示:
把點(diǎn)(3,1)代入y=kx+k,可得k= ,數(shù)形結(jié)合可得實(shí)數(shù)k的取值范圍是 (0, ],
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)的圖象是以原點(diǎn)為圓心、1為半徑的兩段圓弧,如圖所示.則不等式f(x)>f(-x)+x的解集為( )
A. ∪(0,1]
B. [-1,0)∪
C. ∪
D. ∪
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.( )
D.(﹣∞,﹣ ,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營(yíng)的一種商品進(jìn)行進(jìn)價(jià)是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(jià)(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(rùn)(元)與單價(jià)(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價(jià)格為多少元時(shí),周利潤(rùn)最大?并求出最大周利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員分別對(duì)一個(gè)目標(biāo)射擊1次,甲射中的概率為,乙射中的概率為,求:
(1)2人中恰有1人射中目標(biāo)的概率;
(2)2人至少有1人射中目標(biāo)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,其中向量 =(2cosx,1), =(cosx, sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,已知f(A)=2,b=1,△ABC的面積為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),對(duì)任意的,均有.當(dāng)時(shí),,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且tanC= ,c=﹣3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校高三數(shù)學(xué)備課組為了更好地制定復(fù)習(xí)計(jì)劃,開展了試卷講評(píng)后效果的調(diào)研,從上學(xué)期期末數(shù)學(xué)試題中選出一些學(xué)生易錯(cuò)題,重新進(jìn)行測(cè)試,并認(rèn)為做這些題不出任何錯(cuò)誤的同學(xué)為“過關(guān)”,出了錯(cuò)誤的同學(xué)為“不過關(guān)”,現(xiàn)隨機(jī)抽查了年級(jí)50人,他們的測(cè)試成績(jī)的頻數(shù)分布如下表:
期末分?jǐn)?shù)段 | ||||||
人數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
“過關(guān)”人數(shù) | 1 | 2 | 9 | 7 | 3 | 4 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為期末數(shù)學(xué)成績(jī)不低于90分與測(cè)試“過關(guān)”有關(guān)?說明你的理由:
分?jǐn)?shù)低于90分人數(shù) | 分?jǐn)?shù)不低于90分人數(shù) | 合計(jì) | |
“過關(guān)”人數(shù) | |||
“不過關(guān)”人數(shù) | |||
合計(jì) |
(2)在期末分?jǐn)?shù)段的5人中,從中隨機(jī)選3人,記抽取到過關(guān)測(cè)試“過關(guān)”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com