(13分)已知函數(shù),(1)求函數(shù)的定義域;(2)當(dāng)時(shí),求函數(shù)的值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
醫(yī)學(xué)上為研究某種傳染病傳播過程中病毒細(xì)胞的發(fā)展規(guī)律及其預(yù)防,將病毒細(xì)胞注入一只小白鼠體內(nèi)進(jìn)行實(shí)驗(yàn),經(jīng)檢測(cè),病毒細(xì)胞在體內(nèi)的總數(shù)與天數(shù)的關(guān)系記錄如下表.已知該種病毒細(xì)胞在小白鼠體內(nèi)的個(gè)數(shù)超過的時(shí)候小白鼠將死亡.但注射某種藥物,將可殺死此時(shí)其體內(nèi)該病毒細(xì)胞的.

(Ⅰ) 為了使小白鼠在實(shí)驗(yàn)過程中不死亡,第一次最遲應(yīng)在何時(shí)注射該種藥物?(精確到天)
(Ⅱ)第二次最遲應(yīng)在何時(shí)注射該種藥物,才能維持小白鼠的生命?(精確到天)
(參考數(shù)據(jù):,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函數(shù)y=f(x)圖像上兩點(diǎn),且線段P1P2中點(diǎn)P的橫坐標(biāo)為。
(1)求證P的縱坐標(biāo)為定值;   (4分)
(2)若數(shù)列{}的通項(xiàng)公式為=f()(m∈N,n=1,2,3,…,m),求數(shù)列{}的前m項(xiàng)和;    (5分)
(3)若m∈N時(shí),不等式橫成立,求實(shí)數(shù)a的取值范圍。(3分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知集合是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)組成的集合:
在其定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在的定義域內(nèi)存在區(qū)間,使得上的值域是
(1)判斷函數(shù)是否屬于集合?并說明理由.若是,則請(qǐng)求出區(qū)間
(2)若函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題13分)已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的       取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)設(shè)函數(shù),求:
(1);(2);(3)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域?yàn)閇](),判斷在定義域上的增減性,并加以證明;
(3)若,使的值域?yàn)閇]的定義域區(qū)間[]()是否存在?若存在,求出[],若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)f(x)是以2為周期的偶函數(shù) ,且當(dāng)x∈(0 ,1)時(shí) ,
f(x) = -1 .(1)求x∈(-1 ,1)時(shí) f(x)的解析式 ;(2)求f()的值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明函數(shù)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案