若函數(shù)f(x)是以2為周期的偶函數(shù) ,且當(dāng)x∈(0 ,1)時 ,
f(x) = -1 .(1)求x∈(-1 ,1)時 f(x)的解析式 ;(2)求f()的值 .
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分) 函數(shù)的定義域為(0,1](為實數(shù)).
(1)當(dāng)時,求函數(shù)的值域,
(2)當(dāng)時,求函數(shù)在上的最小值,并求出函數(shù)取最小值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為R,對任意,均有
,且對任意都有。
(1)試證明:函數(shù)在R上是單調(diào)函數(shù);
(2)判斷的奇偶性,并證明。
(3)解不等式。
(4)試求函數(shù)在上的值域;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的奇函數(shù),當(dāng),
(1)作出函數(shù)的圖象
(2)求函數(shù)的表達式
(3)求滿足方程的解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的單調(diào)函數(shù)滿足,且對于任意的,
都有.
(1)求證:為奇函數(shù);
(2)若對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)函數(shù)的定義域為,且滿足對任意,
有
(1) 求的值;
(2) 判斷的奇偶性并證明你的結(jié)論;
(3) 如果,,且在上是增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(1)當(dāng)時,求函數(shù)在的值域;
(2)若關(guān)于的方程有解,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),并且在上是減函數(shù).是否存在實數(shù)使恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.[來
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com