(-∞,0]
分析:先由單調(diào)性定義判斷和證明f(x)在[-1,1]上為增函數(shù),從而求得f(x)的最大值,再轉(zhuǎn)化為關(guān)于a的不等式恒成立問(wèn)題求解.
解答:任取-1≤x
1<x
2≤1,則
f(x
1)-f(x
2)=f(x
1)+f(-x
2)=
•(x
1-x
2)
∵-1≤x
1<x
2≤1,∴x
1+(-x
2)≠0,
由已知
>0,又x
1-x
2<0,
∴f(x
1)-f(x
2)<0,即f(x
1)<f(x
2),
所以f(x)在[-1,1]上為增函數(shù).
∵f(1)=1,∴對(duì)x∈[-1,1],恒有f(x)≤1.
所以要使f(x)≤t
2-2at+1對(duì)所有x∈[-1,1],t∈[0,1]恒成立,
即要t
2-2at+1≥1成立,故t
2-2at≥0成立.
∵t∈[0,1],
∴t≠0時(shí)2a≤t,即a≤
,解得a∈(-∞,0].
t=0時(shí),a∈R,
綜上,a∈(-∞,0].
故答案為:(-∞,0].
點(diǎn)評(píng):本題主要考查單調(diào)性和奇偶性的綜合應(yīng)用及函數(shù)最值、恒成立問(wèn)題的轉(zhuǎn)化化歸思想.