4.設(shè)i為虛數(shù)單位,若復(fù)數(shù)$\frac{i}{1+i}$的實(shí)部為a,復(fù)數(shù)(1+i)2的虛部為b,則復(fù)數(shù)z=a-bi在復(fù)平面內(nèi)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)分別求出a,b的值得答案.

解答 解:∵$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}=\frac{1}{2}+\frac{1}{2}i$,∴a=$\frac{1}{2}$,
∵(1+i)2=2i,∴b=2,
則z=a-bi對(duì)應(yīng)點(diǎn)的坐標(biāo)為($\frac{1}{2},-2$),位于第四象限.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若(2a-c)cosB=bcosC,$\overrightarrow{AB}•\overrightarrow{BC}$=-3.
(1)求△ABC的面積;
(2)求AC邊的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)如果關(guān)于x的不等式|x+1|+|x-5|≤m的解集不是空集,求m的取值范圍;
(2)若a,b均為正數(shù),求證:aabb≥abba

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.從數(shù)字1,2,3,4,5中,隨機(jī)抽取3個(gè)數(shù)字(允許重復(fù))組成一個(gè)三位數(shù),其各位數(shù)字之和等于12的概率為(  )
A.$\frac{2}{25}$B.$\frac{13}{125}$C.$\frac{18}{125}$D.$\frac{9}{125}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績(jī)?cè)?.0米(四舍五入,精確到0.1米)以上的進(jìn)入決賽,把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進(jìn)入決賽的人數(shù);
(Ⅱ)若從該校學(xué)生(人數(shù)很多)中隨機(jī)抽取兩名,記X表示兩人中進(jìn)入決賽的人數(shù),求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)過多次測(cè)試后發(fā)現(xiàn),甲成績(jī)均勻分布在8~10米之間,乙成績(jī)均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠(yuǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{π}{3}$B.$\frac{7π}{6}$C.πD.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ-4cosθ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點(diǎn),設(shè)M(2,0),求|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知對(duì)于任意恒成立; ,如果命題“為真,為假”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知四棱錐P-ABCD的底面是正方形,PA⊥平面ABCD,且PA=AD,則平面PAB與平面PCD所成的二面角的度數(shù)為450

查看答案和解析>>

同步練習(xí)冊(cè)答案