函數(shù)y=cos2x-3cosx+2的最小值為
 
考點:復合三角函數(shù)的單調性
專題:三角函數(shù)的圖像與性質
分析:令cosx=t,則t∈[-1,1],換元可得y=t2-3t+2,由二次函數(shù)的知識可得答案.
解答: 解:令cosx=t,則t∈[-1,1],
換元可得y=t2-3t+2,
由二次函數(shù)的知識可知:
函數(shù)y=t2-3t+2在t∈[-1,1]單調遞減,
∴當t=1時,函數(shù)取最小值ymin=1-3+2=0
故答案為:0
點評:本題考查復合函數(shù)的單調性和最值,換元法是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(1+x)-lg(1-x),判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

面面平行的向量方法:證明這兩個平面
 
的是
 

面面平行的判定定理:文字語言:
 
,符號語言:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方形ADEF與梯形ABCD所在平面互相垂直,在梯形ABCD中,AB∥CD,△ABD和△DBC分別是以DB和CD為斜邊的等腰直角三角形,AD=1.
(Ⅰ)求證AF⊥平面ABCD;
(Ⅱ)求直線FC與平面ABCD所成角的正弦值;
(Ⅲ)在線段CE上是否存在點M,使得DM∥平面FAB,如果存在,說明點M滿足的條件,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2-1,用定義證明f(x)在(-∞,0]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m=
1
0
exdx,n=
e
1
1
x
dx
,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2-2(a+1)x+3在區(qū)間(-∞,3]上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△AOB是邊長為2的正三角形,設直線x=t截這個三角形所得到位于此直線左方的圖形面積為S,求S=f(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)計算:(2
7
9
)
1
2
+(lg5)0+(
27
64
)-
1
3

(2)解方程:log3(6x-9)=3;
(3)解不等式:(
1
3
)x2-8
>3-2x;
(4)求函數(shù)y=log2(x2-4x+7)的值域.

查看答案和解析>>

同步練習冊答案