【題目】如圖,在四棱錐 E ABCD 中, EC 底面 ABCD FD / /EC ,底面 ABCD 為矩形, G 為線段 AB 的中點(diǎn), CG DG,CD DF CE 2 ,則四棱錐 E ABCD與三棱錐 F CDG 的公共部分的體積為________________ .

【答案】.

【解析】

根據(jù)題意,公共部分的體積應(yīng)該為兩個(gè)三棱錐體積之差,據(jù)此求解.

連接EF,在四邊形EFDC中,

因?yàn)?/span>FD//EC,確定一個(gè)平面,

DEFC必然相交,記其交點(diǎn)為M;

同理,因?yàn)?/span>EF//AB,確定一個(gè)平面,

FGEA必然相交,記其交點(diǎn)為N,連接MN,如圖所示:

則公共部分的體積

因?yàn)?/span>,故平面FDG,

在三角形EFN和三角形ANG中,因?yàn)?/span>EF//AG,且

故可得NFG的三等分點(diǎn),

又因?yàn)?/span>M點(diǎn)為FC的中點(diǎn),

M點(diǎn)到平面FDN的距離為C點(diǎn)到平面FDN距離的

故公共部分的體積為:.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為的直線過點(diǎn).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

2)若直線交于,兩點(diǎn),且,求傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為上一點(diǎn).

(1)求橢圓的方程;

(2)設(shè)分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對稱點(diǎn),平行于的直線于異于的兩點(diǎn).點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體,點(diǎn)是棱的中點(diǎn),設(shè)直線,直線.對于下列兩個(gè)命題:①過點(diǎn)有且只有一條直線、都相交;②過點(diǎn)有且只有一條直線、都成.以下判斷正確的是(

A.①為真命題,②為真命題B.①為真命題,②為假命題

C.①為假命題,②為真命題D.①為假命題,②為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰梯形ABCD中,,,EAD的中點(diǎn).現(xiàn)分別沿BE,ECABE ECD折起,使得平面ABE⊥平面BCE,平面ECD⊥平面BCE,連接AD,如圖2.

(1)若在平面BCE內(nèi)存在點(diǎn)G,使得GD∥平面ABE,請問點(diǎn)G的軌跡是什么圖形?并說明理由.

(2)求平面AED與平面BCE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為t為參數(shù)),直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.

1)寫出曲線C的極坐標(biāo)方程和直線的參數(shù)方程;

2)若直線l與曲線C交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,1200015000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯(cuò)誤的是(

A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)

C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】依法納稅是每個(gè)公民應(yīng)盡的義務(wù),個(gè)人取得的所得應(yīng)依照《中華人民共和國個(gè)人所得稅法》向國家繳納個(gè)人所得稅(簡稱個(gè)稅).201911日起,個(gè)稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計(jì)算公式為:

個(gè)稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).

應(yīng)納稅所得額的計(jì)算公式為:

應(yīng)納稅所得額=綜合所得收入額-免征額-專項(xiàng)扣除-專項(xiàng)附加扣除-依法確定的其他扣除.

其中免征額為每年60000元,稅率與速算扣除數(shù)見下表:

級(jí)數(shù)

全年應(yīng)納稅所得額所在區(qū)間

稅率(

速算扣除數(shù)

1

3

0

2

10

2520

3

20

16920

4

25

31920

5

30

52920

6

35

85920

7

45

181920

備注:

專項(xiàng)扣除包括基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會(huì)保險(xiǎn)費(fèi)和住房公積金。

專項(xiàng)附加扣除包括子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等支出。

其他扣除是指除上述免征額、專項(xiàng)扣除、專項(xiàng)附加扣除之外,由國務(wù)院決定以扣除方式減少納稅的優(yōu)惠政策規(guī)定的費(fèi)用。

某人全年綜合所得收入額為160000元,假定繳納的基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會(huì)保險(xiǎn)費(fèi)和住房公積金占綜合所得收入額的比例分別是,,,專項(xiàng)附加扣除是24000元,依法確定其他扣除是0元,那么他全年應(yīng)繳納綜合所得個(gè)稅____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左右焦點(diǎn)為為它的中心,為雙曲線右支上的一點(diǎn),的內(nèi)切圓圓心為,且圓軸相切于點(diǎn),過作直線的垂線,垂足為,若雙曲線的離心率為,則( )

A.B.C.D.關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊答案