【題目】依法納稅是每個(gè)公民應(yīng)盡的義務(wù),個(gè)人取得的所得應(yīng)依照《中華人民共和國(guó)個(gè)人所得稅法》向國(guó)家繳納個(gè)人所得稅(簡(jiǎn)稱個(gè)稅).201911日起,個(gè)稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計(jì)算公式為:

個(gè)稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).

應(yīng)納稅所得額的計(jì)算公式為:

應(yīng)納稅所得額=綜合所得收入額-免征額-專項(xiàng)扣除-專項(xiàng)附加扣除-依法確定的其他扣除.

其中免征額為每年60000元,稅率與速算扣除數(shù)見(jiàn)下表:

級(jí)數(shù)

全年應(yīng)納稅所得額所在區(qū)間

稅率(

速算扣除數(shù)

1

3

0

2

10

2520

3

20

16920

4

25

31920

5

30

52920

6

35

85920

7

45

181920

備注:

專項(xiàng)扣除包括基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會(huì)保險(xiǎn)費(fèi)和住房公積金。

專項(xiàng)附加扣除包括子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等支出。

其他扣除是指除上述免征額、專項(xiàng)扣除、專項(xiàng)附加扣除之外,由國(guó)務(wù)院決定以扣除方式減少納稅的優(yōu)惠政策規(guī)定的費(fèi)用。

某人全年綜合所得收入額為160000元,假定繳納的基本養(yǎng)老保險(xiǎn)、基本醫(yī)療保險(xiǎn)、失業(yè)保險(xiǎn)等社會(huì)保險(xiǎn)費(fèi)和住房公積金占綜合所得收入額的比例分別是,,,,專項(xiàng)附加扣除是24000元,依法確定其他扣除是0元,那么他全年應(yīng)繳納綜合所得個(gè)稅____元.

【答案】1880.

【解析】

根據(jù)題意求出應(yīng)納稅所得額,再根據(jù)公式求出個(gè)稅稅額即可.

解:由已知應(yīng)納稅所得額,

則個(gè)稅稅額

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐的底面是正方形,平面,且,該四棱錐的五個(gè)頂點(diǎn)都在同一個(gè)球面上,分別是棱的中點(diǎn),直線被球面所截得的線段長(zhǎng)為,則該球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐 E ABCD 中, EC 底面 ABCD FD / /EC ,底面 ABCD 為矩形, G 為線段 AB 的中點(diǎn), CG DGCD DF CE 2 ,則四棱錐 E ABCD與三棱錐 F CDG 的公共部分的體積為________________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年7曰1日至3日,世界新能源汽車大會(huì)在海南博鰲召開(kāi),大會(huì)著眼于全球汽車產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對(duì)100輛汽車進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:

(1)估計(jì)這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

(2)根據(jù)大量的汽車測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.

參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布,則,,.

(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進(jìn),若遙控車最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車開(kāi)始在第0格,客戶每擲一次硬幣,遙控車車向前移動(dòng)一次,若擲出正面,遙控車向前移動(dòng)一格(從),若擲出反面,遙控車向前移動(dòng)兩格(從),直到遙控車移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束,設(shè)遙控車移到第n格的概率為,試說(shuō)明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買該款新能源汽車.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)exex,其中e是自然對(duì)數(shù)的底數(shù).

1)證明:f(x)R上的偶函數(shù);

2)若關(guān)于x的不等式mf(x)≤exm1(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;

3)已知正數(shù)a滿足:存在x0[1,+∞),使得f(x0)<a(3x0)成立.試比較ea1ae1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個(gè)交點(diǎn),且.

1)求圓的方程;

2)已知橢圓的上頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.

1)求圖中的值,并估計(jì)該品種花苗綜合評(píng)分的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)填寫下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培駐外方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,∠BAC90°,ABAC2,點(diǎn)MA1C1的中點(diǎn),點(diǎn)NAB1上一動(dòng)點(diǎn).若點(diǎn)NAB1的中點(diǎn)且CMMN,求二面角MCNA的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案