(本小題滿(mǎn)分12分)

設(shè)函數(shù),的一個(gè)極值點(diǎn)是X = 3..

(I)求a與b的關(guān)系式(用a表示b,并求的單調(diào)區(qū)間;
(11)設(shè)a>0,若存在使得成立,求a的取值范圍.

 

 

【解】(Ⅰ)f `(x)=-e3-x,              ………………1分

f `(3)=0,得 -e3-3=0,即得b=-3-2a,        …..2分

f `(x)e3-x=-e3-x=-(x-3)(xa+1)e3-x.

f `(x)=0,得x1=3或x2=-a-1,由于x=3是極值點(diǎn),∴a1≠3,a≠-4, …..4分

當(dāng)a<-4時(shí),x2>3=x1,則在區(qū)間(-∞,3)上,f `(x)<0,

 f (x)為減函數(shù);在區(qū)間(3,―a―1)上,f `(x)>0,f (x)為增函數(shù);

在區(qū)間(―a―1,+∞)上,f `(x)<0,f (x)為減函數(shù)。             …………5分

當(dāng)a>-4時(shí),x2<3=x1,則在區(qū)間(-∞,―a―1)上,f `(x)<0, f (x)為減函數(shù);

在區(qū)間(―a―1,3)上,f `(x)>0,f (x)為增函數(shù);在區(qū)間(3,+∞)上,f`(x)<0,f (x)為減函數(shù)…6分

(Ⅱ)由(Ⅰ)知,當(dāng)a>0時(shí),f (x)在區(qū)間(0,3)上的單調(diào)遞增,在區(qū)間(3,4)上單調(diào)遞減,由于f(x)連續(xù),那么f (x)在區(qū)間上的值域是,而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,

那么f (x)在區(qū)間上的值域是. …..8分 又在區(qū)間上是增函數(shù),且它在區(qū)間上的值域是,………….10分

由于(a2)-(a+6)=a2a=()2≥0,所以只須僅須(a2)-(a+6)<1且a>0,解得0<a<.故a的取值范圍是(0,)     ……………12分.         

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿(mǎn)分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿(mǎn)分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿(mǎn)分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案