如圖,在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求證:A1C1∥平面AB1C.
(2)求證:AC⊥平面B1BDD1
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)A1C1,則A1C1∥AC,由此能證明A1C1∥平面AB1C.
(2)由正方形性質(zhì)得AC⊥BD,由線面垂直得DD1⊥AC,由此能證明AC⊥平面B1BDD1
解答: 證明:(1)連結(jié)A1C1,則A1C1∥AC,
∵A1C1不包含于平面AB1C,AC?平面AB1C,
∴A1C1∥平面AB1C.
(2)∵ABCD是正方形,∴AC⊥BD,
∵DD1⊥平面ABCD,又AC?平面ABCD,
∴DD1⊥AC,
又DD1∩BD=D,
∴AC⊥平面B1BDD1
點(diǎn)評:本題考查直線與平面平行的證明,考查直線民平面垂直的證明,解題時要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線2ax+by-2=0(a>0,b>0)平分圓x2+y2-2x-4y-6=0,則
2
a
+
1
b
的最小值是( 。
A、2-
2
B、
2
-1
C、3+2
2
D、3-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(2-
3
x)50=a0+a1x+a2x2+…+a50x50,其中a0,a1,…a50是常數(shù),計算:
(1)a0+a1+a2+…+a50;
(2)a0+a2+…+a50;
(3)a10;
(4)(a0+a2+a4+…+a502-(a1+a3+…+a492

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若滿足方程:x2+y2-2(t+3)x+2(1-4t2)y+16t2+9=0(t∈R)的點(diǎn)的軌跡是圓.
(1)求t的取值范圍;
(2)求其中面積最大的圓的方程;
(3)若點(diǎn)P(3,4t2)恒在所給的圓內(nèi),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

成都某單位有車牌尾號為3的汽車A和尾號為7的汽車B,兩車分屬于兩個獨(dú)立業(yè)務(wù)部門.對一段時間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計,在非限行日,A車日出車頻率0.6,B車日出車頻率0.5.成都地區(qū)汽車限行規(guī)定如下:
車尾號1和62和73和84和95和0
限行日星期一星期二星期三星期四星期五
現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車相互獨(dú)立.
(Ⅰ)求該單位在星期一恰好出車一臺的概率;
(Ⅱ)設(shè)X表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C經(jīng)過點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,直線L:y=kx+1與⊙C相交于P,Q點(diǎn).
(1)求⊙C的方程.
(2)過點(diǎn)(0,1)作直線L1⊥L,且L1交⊙C于M,N,求四邊形PMQN的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2-6n,求數(shù)列{|an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品每件成本10元,售價為30元,每星期賣出100件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值x(單位:元,0≤x≤30)成正比.已知商品單價降低2元時,一星期多賣出20件.
(1)將一個星期的商品銷售利潤y表示成x的函數(shù);
(2)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
 
2
2
+C
 
2
3
+C
 
2
4
+…+C
 
2
10
=
 
.已知A
 
5
n
=56C
 
7
n
,則n=
 

查看答案和解析>>

同步練習(xí)冊答案