已知數(shù)列{an}的前n項和是Sn,滿足Sn=2an-1.
(1)求數(shù)列的通項an及前n項和Sn;
(2)若數(shù)列{bn}滿足,求數(shù)列{bn}的前n項和Tn;
(3)若對任意的x∈R,恒有Tn<x2-ax+2成立,求實數(shù)a的取值范圍.
【答案】分析:(1)、根據(jù)題中已知條件先求出數(shù)列{an}是首項為1,公比為2的等比數(shù)列,然后求出數(shù)列an的通項公式,根據(jù)等比數(shù)列前n項和的公式便可求出Sn的表達式;
(2)、將(1)中求得的Sn的表達式代入bn的表達式中即可求得bn的通項公式,然后即可求出數(shù)列{bn}的前n項和Tn的表達式;
(3)、將(2)中求得的Tn的表達式代入Tn<x2-ax+2,進一步推理即可得出x2-ax+1≥0在R上恒成立,即可求出a的取值范圍.
解答:解:(1)當n=1時,S1=2a1-1,a1=1,
當n≥2時,Sn-1=2an-1-1
∴an=Sn-Sn-1=2an-2an-1
∴an=2an-1(3分)
∴數(shù)列{an}是首項為1,公比為2的等比數(shù)列.
∴an=2n-1(n∈N*


(2)
==

(3)由Tn<x2-ax+2恒成立,
恒成立,
恒成立,
必須且只須滿足1≤x2-ax+2恒成立,
即x2-ax+1≥0在R上恒成立
∴△=(-a)2-4×1≤0,
解得-2≤a≤2.
點評:本題主要考查了等比數(shù)列的基本性質以及數(shù)列與不等式的綜合,考查了學生的計算能力和對數(shù)列與不等式的綜合掌握,解題時注意整體思想和轉化思想的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案