已知二次函數(shù)f(x)的二次項系數(shù)為a,且方程f(x)=x的解集為{1,2}.
(1)若方程f(x)=x2有兩個相等的實根,求f(x)的解析式;
(2)若a<0,記f(x)的最大值為g(a),求a•g(a)的取值范圍.
考點:函數(shù)的零點與方程根的關系
專題:計算題,函數(shù)的性質(zhì)及應用
分析:由題意,f(x)-x=a(x-1)(x-2);從而寫出f(x);
(1)化簡方程f(x)=x2,從而可得△=(1-3a)2-4(a-1)2a=0,從而解出a,從而得到f(x)的解析式;
(2)由題意,g(a)=f(-
1-3a
2a
);ag(a)=a[a•(-
1-3a
2a
2+(1-3a)(-
1-3a
2a
)+2a],化簡求取值范圍.
解答: 解:由題意,f(x)-x=a(x-1)(x-2);
故f(x)=a(x-1)(x-2)+x
=ax2+(1-3a)x+2a;
(1)由方程f(x)=x2有兩個相等的實根可得,
△=(1-3a)2-4(a-1)2a=0,
解得,a=-1;
故f(x)=-x2+4x-2;
(2)由題意,
g(a)=f(-
1-3a
2a
);
ag(a)=a[a•(-
1-3a
2a
2+(1-3a)(-
1-3a
2a
)+2a]
=-
1
4
(a2-6a+1)
=-
1
4
(a-3)2+2,
∵a<0,
∴-
1
4
(a-3)2+2<-
1
4

故a•g(a)的取值范圍為(-∞,-
1
4
).
點評:本題考查二次函數(shù)的性質(zhì)應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,已知點E、F、G分別為棱SA、SC、BC的中點,過點E、F、G三點的平面與線段AB的交點為H.
(1)求證:AC∥平面EFGH;
(2)求證:AC∥HG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=x-ex在[-1,1]上的最大值是
 
,最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示:給出函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的圖象的一段,則f(x)的表達式為(  )
A、y=2sin(x+
π
6
B、y=2sin(x-
π
6
C、y=-2sin(2x+
π
6
D、y=2sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四邊形ABCD是平行四邊形,直線SC⊥平面ABCD,E是SA的中點,求證:平面BDE⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.
(1)求雙曲線的標準方程;
(2)若點M在雙曲線上,F(xiàn)1、F2為左、右焦點.且|MF1|+|MF2|=6
3
,試判斷△MF1F2的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表是某地一家超市在2014年一月份某周的時間x與每天獲得的利潤y(單位:萬元)的有關數(shù)據(jù).
時間x星期二星期三星期四星期五星期六
利潤y23569
(1)畫出數(shù)據(jù)對應的散點圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程
y
=
b
x+
a
;
(3)估計星期日獲得的利潤為多少萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某個體服裝店經(jīng)營某種服裝在某周內(nèi)獲純利y(元)與該周每天銷售這件服裝件數(shù)x(件)之間有如下數(shù)據(jù):
服裝件數(shù)x(件)3456789
某周內(nèi)獲純利y(元)66697381899091
(1)求,
.
x
.
y
;
(2)若純利y與每天銷售這件服裝件數(shù)x之間是線性相關的,求回歸方程;
(3)若該店每天至少要獲利200 元,請你預測該店每天至少要銷售這種服裝多少件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以正方形的一邊為軸建立平面直角坐標系,若其直觀圖是有一條邊長為4的平行四邊形,則此四邊形的面積是(  )
A、16B、16或64
C、64D、以上都不對

查看答案和解析>>

同步練習冊答案