在等差數(shù)列{an}中,a7•a11=6,a4+a14=5,則a20-a10等于( 。
A、
5
2
B、
2
5
C、
5
2
或-
5
2
D、
2
5
或-
2
5
分析:根據(jù)等差數(shù)列的基本公式先求出公差d的值,便可求出a20-a10的值.
解答:解:a7+a11=a14+a4=5,∵a7•a11=6,
a7=2
a11=3
a7=3
a11=2

∵a7=a1+6d,a11=a1+10d,
解得d=0.25或d=-0.25,
a20-a10=10d=
5
2
或-
5
2

故選C.
點評:本題考查了等差數(shù)列的基本公式,考查了學(xué)生的計算能力,屬于基礎(chǔ)題,多加訓(xùn)練即可掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個根,那么使得前n項和Sn為負值的最大的n的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊答案