【題目】如圖,設(shè)為內(nèi)一點(diǎn),直線、、與邊、、分別交于點(diǎn)、、.設(shè)分別以、為直徑的兩圓交于點(diǎn)、,分別以、為直徑的兩圓交于點(diǎn)、,分別以、為直徑的兩圓交于點(diǎn)、.證明:、、、、、六點(diǎn)共圓.
【答案】見解析
【解析】
首先證明:、、三線共點(diǎn)于,其中,為的垂心.
如圖,作于點(diǎn),于點(diǎn),于點(diǎn).
則、、共點(diǎn)于,即的垂心.
由,知以、為直徑的圓均過點(diǎn)、.故為兩圓根軸.
類似地,以、為直徑的圓均過點(diǎn)、,為兩圓根軸;以、為直徑的圓均過點(diǎn)、,為兩圓根軸.
由根心定理,知、、三線共點(diǎn),且與交于點(diǎn).
故過點(diǎn).
由、、、四點(diǎn)共圓.
類似地,、均過點(diǎn),有,.
又,故、、、四點(diǎn)共圓于,、、、四點(diǎn)共圓于,、、、四點(diǎn)共圓于.
如圖,設(shè)、、的中點(diǎn)分別為、、,、、的中點(diǎn)分別為、、.
其次證明:、、三線共點(diǎn).
因?yàn)?/span>,,所以,為的中垂線.
類似地,為的中垂線,為的中垂線.
故為與的交點(diǎn),為與的交點(diǎn),為與的交點(diǎn).
又、、共點(diǎn)于,由塞瓦定理得.
再由塞瓦定理的逆定理,知、、三線共點(diǎn).
因此,、、三點(diǎn)重合.
故、、、、、六點(diǎn)共圓.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點(diǎn)為A,直線l經(jīng)過Ω在y軸正半軸上的頂點(diǎn)B且與直線OA(O為坐標(biāo)原點(diǎn))垂直,l與Ω的另一個交點(diǎn)為C,l與W交于M,N兩點(diǎn).
(1)求W的標(biāo)準(zhǔn)方程:
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其最小正周期為 .
(1)求 的表達(dá)式;
(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象,若關(guān)于 的方程 在區(qū)間 上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是物理、生物、政治這三科,且物理在A層班級,生物在B層班級,該校周一上午課程安排如表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有( )
A.8種B.10種C.12種D.14種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2aln x.
(1)當(dāng)a=1時,求函數(shù)f′(x)的最小值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求證:對于區(qū)間上任意兩個自變量的值,都有;
(Ⅲ)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)①;②;③;④,其中在區(qū)間上單調(diào)遞減的函數(shù)序號是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計(jì)算該數(shù)列的項(xiàng)時,若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com