【題目】已知函數(shù)f(x)=x2+2aln x.

(1)當(dāng)a=1時(shí),求函數(shù)f′(x)的最小值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

【答案】(1)4.

(2) 函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞).函數(shù)f(x)有極小值f()=-a+2aln.

【解析】分析:首先求出函數(shù)的定義域,先保證函數(shù)的生存權(quán),對(duì)于第一問,對(duì)函數(shù)求導(dǎo),之后應(yīng)用基本不等式求出的最小值,注意等號(hào)成立的條件;對(duì)于第二問求導(dǎo),之后對(duì)參數(shù)的取值進(jìn)行討論,利用導(dǎo)數(shù)大于零,函數(shù)單調(diào)增,導(dǎo)數(shù)小于零,函數(shù)單調(diào)減,從而確定出函數(shù)的單調(diào)區(qū)間以及函數(shù)的極值.

詳解:函數(shù)f(x)的定義域?yàn)?0,+∞).

(1)當(dāng)a=1時(shí),f′(x)=2x≥2=4,當(dāng)且僅當(dāng)2x

x=1時(shí)等號(hào)成立,故函數(shù)f′(x)的最小值為4.

(2)f′(x)=2x=2(x).

①當(dāng)a≥0時(shí),f′(x)>0,因此f(x)的單調(diào)遞增區(qū)間為(0,+∞),這時(shí)函數(shù)無極值;

②當(dāng)a<0時(shí),f′(x)=.當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下:

x

(0,)

(,+∞)

f′(x)

0

f(x)

極小值

因此函數(shù)f(x)的單調(diào)遞減區(qū)間是(0,),單調(diào)遞增區(qū)間是(,+∞).且當(dāng)x時(shí),函數(shù)f(x)有極小值f()=-a+2aln.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當(dāng)a=2時(shí),試求函數(shù)圖線過點(diǎn)(1,f(1))的切線方程;
(Ⅱ)當(dāng)a=1時(shí),若關(guān)于x的方程f(x)=x+b有唯一實(shí)數(shù)解,試求實(shí)數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓,圓,動(dòng)點(diǎn)在直線上(),過分別作圓的切線,切點(diǎn)分別為,,若滿足的點(diǎn)有且只有一個(gè),則實(shí)數(shù)的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.

(Ⅰ)證明:平面ABE⊥平面EBD;
(Ⅱ)點(diǎn)M在線段EF上,試確定點(diǎn)M的位置,使平面MAB與平面ECD所成的角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

直線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 ,直線 與曲線 交于不同的兩點(diǎn).

(1)求實(shí)數(shù) 的取值范圍;

(2)已知 ,設(shè)點(diǎn) ,若 , 成等比數(shù)列,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于下列說法正確的是(
A.若f(x)是奇函數(shù),則f(x)是單調(diào)函數(shù)
B.命題“若x2﹣x﹣2=0,則x=1”的逆否命題是“若x≠1,則x2﹣x﹣2=0”
C.命題p:?x∈R,2x>1024,則¬p:?x0∈R,
D.命題“?x∈(﹣∞,0),2x<x2”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點(diǎn)AB

)若α,求線段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,ACB=90°.

Ⅰ)求證:AC1A1B;

Ⅱ)求直線AB與平面A1BC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρcos(θ+ )=1.以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C的參數(shù)方程為 (θ為參數(shù)).若直線l與圓C相切,求r的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案