【題目】設(shè)函數(shù),數(shù)列滿足條件:對(duì)于,,且,并有關(guān)系式:,又設(shè)數(shù)列滿足(,).

1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)試問數(shù)列是否為等差數(shù)列,如果是,請(qǐng)寫出公差,如果不是,說明理由;

3)若,記,,設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

【答案】1)證明見解析,;(2)證明見解析,公差為;(3

【解析】

1)由已知得出數(shù)列的遞推式,湊配后可得是等差數(shù)列,從而可得通項(xiàng)公式;

2)計(jì)算后得常數(shù),即證得等差數(shù)列;

3)由錯(cuò)位相減法求得,再由等差數(shù)列前項(xiàng)和公式求得,代入不等式,化簡(jiǎn)后用分離參數(shù)法轉(zhuǎn)化為求函數(shù)最值.

1)證明:∵,,

,即,,

,所以,∴是等比數(shù)列.

,∴

2)證明:∵,∴,

∴數(shù)列是等差數(shù)列,公差為,首項(xiàng)為

3)由及(1)(2)得,,

,

,

兩式相減得:,

∴不等式為:

,整理得對(duì)恒成立,

,

,因此遞增,且大于0,

所以遞增,當(dāng)時(shí),,且,故,

所以的范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義平面向量的一種運(yùn)算:是向量的夾角),則下列命題:

;;③若,則;其中真命題的序號(hào)是___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,8人中選出5人排成一排.

1必須在內(nèi),有多少種排法?

2,三人不全在內(nèi),有多少種排法?

3,都在內(nèi),且,必須相鄰,都不相鄰,都多少種排法?

4不允許站排頭和排尾,不允許站在中間(第三位),有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項(xiàng)為1..

1)若為常數(shù)列,求的值:

2)若為公比為2的等比數(shù)列,求的解析式:

3)是否存在等差數(shù)列,使得對(duì)一切都成立?若存在,求出數(shù)列的通項(xiàng)公式:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

(Ⅱ)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有10個(gè)除顏色外完全一樣的黑球和白球,已知從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.

1)求白球的個(gè)數(shù);

2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為X,求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年籃球世界杯在中國舉行,中國男籃由于主場(chǎng)作戰(zhàn)而備受觀眾矚目.為了調(diào)查國人對(duì)中國男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度,調(diào)查人員隨機(jī)抽取了男性觀眾與女性觀眾各100名進(jìn)行調(diào)查,所得情況如下表所示:

男性觀眾

女性觀眾

認(rèn)為中國男籃能夠進(jìn)入十六強(qiáng)

60

認(rèn)為中國男籃不能進(jìn)入十六強(qiáng)

若在被抽查的200名觀眾中隨機(jī)抽取1人,抽到認(rèn)為中國男籃不能進(jìn)入十六強(qiáng)的女性觀眾的概率為.

1)完善上述表格;

2)是否有99%的把握認(rèn)為性別與對(duì)中國男籃能否進(jìn)入十六強(qiáng)持有的態(tài)度有關(guān)?

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫出函數(shù)上的圖象;

2)若為奇函數(shù),求;

3)在(2)的前提下,將函數(shù)的圖象向左平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)家發(fā)現(xiàn)某種特別物質(zhì)的溫度(單位:攝氏度)隨時(shí)間(時(shí)間:分鐘)的變化規(guī)律滿足關(guān)系式:,).

(1)若,求經(jīng)過多少分鐘,該物質(zhì)的溫度為5攝氏度;

(2)如果該物質(zhì)溫度總不低于2攝氏度,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案