【題目】從,,等8人中選出5人排成一排.
(1)必須在內(nèi),有多少種排法?
(2),,三人不全在內(nèi),有多少種排法?
(3),,都在內(nèi),且,必須相鄰,與,都不相鄰,都多少種排法?
(4)不允許站排頭和排尾,不允許站在中間(第三位),有多少種排法?
【答案】(1)4200種;(2)5520;(3)240;(4)4440
【解析】
(1)只需從余下的7人中選4人出來排列即可;
(2)采用間接法;
(3)先從余下5人中選2人有種不同結(jié)果,由于,必須相鄰,與,都不相鄰,利用捆綁法、插空法即可解決;
(4)分所選的5人無A、B,有A、無B,無A、有B,有A、B四種情況討論即可.
(1)由題意,先從余下的7人中選4人共有種不同結(jié)果,再將這4人與A進(jìn)行全排
列有種不同的排法,故由乘法原理可知共有種不同排法;
(2)從8人中任選5人排列共有種不同排法,,,三人全在內(nèi)有種不同排
法,由間接法可得,,三人不全在內(nèi)共有種不同排法;
(3)因,,都在內(nèi),所以只需從余下5人中選2人有種不同結(jié)果,,必須
相鄰,有種不同排法,由于與,都不相鄰,先將選出的2人進(jìn)行全排列共有
種不同排法,再將A、B這個(gè)整體與C插入到選出的2人所產(chǎn)生的3各空位中有種不同
排法,由乘法原理可得共有種不同排法;
(4)分四類:
第一類:所選的5人無A、B,共有種排法;
第二類:所選的5人有A、無B,共有種排法;
第三類:所選的5人無A、有B,共有種排法;
第四類:所選的5人有A、B,若A排中間時(shí),有種排法,
若A不排中間時(shí),有種排法,共有種排法;
綜上,共有4440種不同排法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在海岸線l一側(cè)P處有一個(gè)美麗的小島,某旅游公司為方便登島游客,在l上設(shè)立了M,N兩個(gè)報(bào)名接待點(diǎn),P,M,N三點(diǎn)滿足任意兩點(diǎn)間的距離為公司擬按以下思路運(yùn)作:先將M,N兩處游客分別乘車集中到MN之間的中轉(zhuǎn)點(diǎn)Q處點(diǎn)Q異于M,N兩點(diǎn),然后乘同一艘游輪由Q處前往P島據(jù)統(tǒng)計(jì),每批游客報(bào)名接待點(diǎn)M處需發(fā)車2輛,N處需發(fā)車4輛,每輛汽車的運(yùn)費(fèi)為20元,游輪的運(yùn)費(fèi)為120元設(shè),每批游客從各自報(bào)名點(diǎn)到P島所需的運(yùn)輸總成本為T元.
寫出T關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;
問:中轉(zhuǎn)點(diǎn)Q距離M處多遠(yuǎn)時(shí),T最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體是側(cè)棱與底面邊長都相等的正三棱錐,它的對(duì)棱互相垂直.有一個(gè)如圖所示的正四面體,E,F,G分別是棱AB,BC,CD的中點(diǎn).
(1)求證:面EFG;
(2)求異面直線EG與AC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個(gè)階段后得到銷售單價(jià)和月銷售量之間的一組數(shù)據(jù),如下表所示:
銷售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量(萬件) | 11 | 10 | 8 | 6 | 5 |
(Ⅰ)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測月銷售量不低于12萬件時(shí)銷售單價(jià)的最大值;
(Ⅱ)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎(jiǎng)勵(lì).現(xiàn)用樣本估計(jì)總體,從上述5個(gè)銷售單價(jià)中任選2個(gè)銷售單價(jià),求抽到的產(chǎn)品含有月銷量量不低于10萬件的概率.
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為整數(shù),集合中的數(shù)由小到大組成數(shù)列.
(1)寫出數(shù)列的前三項(xiàng);
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn),,三種紀(jì)念品,每種紀(jì)念品均有普通型和精品型兩種,某一天產(chǎn)量如下表(單位:個(gè)):
普通型 | 精品型 | |
紀(jì)念品 | 800 | 200 |
紀(jì)念品 | 150 | |
紀(jì)念品 | 500 | 350 |
現(xiàn)采用分層抽樣的方法在這一天生產(chǎn)的紀(jì)念品中抽取100個(gè),其中有種紀(jì)念品40個(gè).
(1)若再用分層抽樣的方法在所有種紀(jì)念品中抽取一個(gè)容量為13的樣本.將該樣本看成一個(gè)總體,從中任取2個(gè)紀(jì)念品,求至少有1個(gè)精品型紀(jì)念品的概率(用最簡分?jǐn)?shù)表示);
(2)從種精品型紀(jì)念品中抽取6個(gè),其某種指標(biāo)的數(shù)據(jù)分別如下:4,7,,,8,5.把這6個(gè)數(shù)據(jù)看作一個(gè)總體,其均值為7、方差為6,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,數(shù)列滿足條件:對(duì)于,,且,并有關(guān)系式:,又設(shè)數(shù)列滿足(且,).
(1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)試問數(shù)列是否為等差數(shù)列,如果是,請(qǐng)寫出公差,如果不是,說明理由;
(3)若,記,,設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生活中萬事萬物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點(diǎn)中也有相關(guān)點(diǎn),現(xiàn)在定義:平面內(nèi)如果兩點(diǎn)、都在函數(shù)的圖像上,而且滿足、兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(、)是函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”(注明:點(diǎn)對(duì)(、)與(、)看成同一個(gè)“相關(guān)對(duì)稱點(diǎn)對(duì)”).已知函數(shù),則這個(gè)函數(shù)的“相關(guān)對(duì)稱點(diǎn)對(duì)”有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com