精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱中,,,,分別為棱的中點.

(1)求證:∥平面

(2)若異面直線 所成角為,求三棱錐的體積.

【答案】(1)見解析;(2)

【解析】

分析:(1)的中點,連接, ,由棱柱的性質可得,,,再由面面平行的判定得到平面平面∥平面,,則答案得到證明;
(2)由(1)知知異面直線所成角,所以, ,進一步得到平面,,,再由已知求出的長度,把三棱錐的體積轉化為 的體積求解.

詳解:

(1)證明:取的中點,連接,

因為分別為棱的中點,所以,,,

,同理可證,且,平面,

所以平面∥平面,

平面,所以∥平面.

(2)由(1)知異面直線所成角,所以,

因為三棱柱為直三棱柱,所以平面,所以平面,

,又,,

.

,,平面,

所以 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數集具有性質對任意的,使得成立.

(1)分別判斷數集是否具有性質,并說明理由;

(2)求證: ;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側面AA1C1C是菱形,AC1與A1C交于點O,E是棱AB上一點,且OE∥平面BCC1B1
(1)求證:E是AB中點;
(2)若AC1⊥A1B,求證:AC1⊥BC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為的正方形.

(1)求該幾何體的表面積;

(2)求該幾何體的外接球的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某山區(qū)小學有100名四年級學生,將全體四年級學生隨機按0099編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學生,各組內抽取的編號按依次增加10進行系統(tǒng)抽樣.

1)若抽出的一個號碼為22,則此號碼所在的組數是多少?據此寫出所有被抽出學生的號碼;

2)分別統(tǒng)計這10名學生的數學成績,獲得成績數據的莖葉圖如圖4所示,求該樣本的方差;

3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的左右焦點分別為、,離心率.過的直線交橢圓于、兩點,三角形的周長為.

(1)求橢圓的方程;

(2)若弦,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學調查了某班全部 45 名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)

參加書法社團

未參加書法社團

參加演講社團

8

5

未參加書法社團

2

30

(1)從該班隨機選 1 名同學,求該同學至少參加上述一個社團的概率;

(2)在既參加書法社團又參加演講社團的 8 名同學中,有 5 名男同學,3名女同學.現(xiàn)從這 5 名男同學和 3 名女同學中各隨機選 1 人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓O1和圓O2的極坐標方程分別為ρ=2,
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經過兩圓交點的直線的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某市有一條東西走向的公路l,現(xiàn)欲經過公路l上的O處鋪設一條南北走向的公路m,在施工過程中發(fā)現(xiàn)O處的正北方向1百米的A處有一漢代古跡,為了保護古跡,該市委決定以A為圓心,1百米為半徑設立一個圓形保護區(qū),為了連通公路l,m,欲再新建一條公路PQ,點P,Q分別在公路l,m上(點P,Q分別在點O的正東、正北方向),且要求PQ與圓A相切.

(1)當點P距O處2百米時,求OQ的長;

(2)當公路PQ的長最短時,求OQ的長.

查看答案和解析>>

同步練習冊答案