已知函數(shù)f(x)=x+
t
x
,有如下性質:如果常數(shù)t>0,那么該函數(shù)(0,
t
]上是減函數(shù),在[
t
,+∞)上是增函數(shù).
(1)已知h(x)=x+
4
x
,x∈[1,8],求函數(shù)h(x)的最大值和最小值.
(2)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質,求函數(shù)f(x)的單調區(qū)間和值域.
(3)對于(2)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.
考點:函數(shù)恒成立問題,函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:(1)利用已知明確h(x)在x∈[1,2]上單調遞減,在x∈[2,8]上單調遞增,則在x=2時取最小值,比較1與8的函數(shù)值得到最大值;
(2)把2x+1看成整體,研究對勾函數(shù)的單調性從而求出函數(shù)的值域,以及利用復合函數(shù)的單調性的性質得到該函數(shù)的單調性;
(3)對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)可轉化成f(x)的值域為g(x)的值域的子集,建立關系式,解之即可.
解答: 解:(1)由已知可知,函數(shù)h(x)在x∈[1,2]上單調遞減,在x∈[2,8]上單調遞增,
因為h(1)=5<h(8)=
17
2
,所以當x=8時,h(x)max=h(8)=
17
2
,
當x=2時,h(x)min=h(2)=4
(2)y=f(x)=
4x2-12x-3
2x+1
=2x+1+
4
2x+1
-8

設u=2x+1,x∈[0,1],1≤u≤3,則y=u+
4
u
-8,u∈[1,3]
,
由已知性質得,
1≤u≤2,即0≤x≤
1
2
時,f(x)單調遞減,所以遞減區(qū)間為[0,
1
2
]

2≤u≤3,即
1
2
≤x≤1
時,f(x)單調遞增,所以遞增區(qū)間為[
1
2
,1]

f(0)=-3,f(
1
2
)=-4,f(1)=-
11
3
,得f(x)的值域為[-4,-3]
(3)由于g(x)=-x-2a為減函數(shù),故g(x)∈[-1-2a,-2a],x∈[0,1]
由題意,f(x)的值域為g(x)的值域的子集,
從而有
-1-2a≤-4
-2a≥-3
所以a=
3
2
點評:本題主要考查了利用單調性求函數(shù)的值域,以及函數(shù)恒成立問題,同時考查了轉化的思想和運算求解的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對某電子元件進行壽命追蹤調查,情況如表:
(1)請完成頻率分布表;并畫出頻率分布直方圖;
(2)估計樣本的眾數(shù),中位數(shù).
(3)在統(tǒng)計數(shù)據(jù)的分析中,有一項計算的程序框圖如圖所示,求輸出的S的值.
序號
(i)
壽命(h)組中值
G
頻  數(shù)頻  率
F
1100~20015020
2200~300250
3300~40035080
4400~5004500.2
5500~60055030
合  計2001

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1
(1)求an
(2)設bn=2nan,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:
(1)
2
x-2
≥1
(2)log(2x-3)(x2-3)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
-x2+3x(x>0)
x2-3x(x≤0)

(1)作出函數(shù)f(x)的圖象,并求函數(shù)f(x)的單調區(qū)間;
(2)求集合M={m|使方程f(x)=m有三個不相等的實數(shù)根}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,且a≥1,函數(shù)f(x)=ax||x|-a|.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調增區(qū)間;
(Ⅱ)若x∈[-2,2]時,f(x)的最大值為g(a),求出g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商場搞促銷抽獎活動,規(guī)則如下:箱內放有3枚白棋子和2枚黑棋子,顧客從中取出2枚棋子,如果兩位棋子都是黑棋子或者都是白棋子,則中獎.獎勵方法如下:若取出2枚黑棋子則中一等獎,獎勵價值100元的商品;若取出2枚白棋子中則中二等獎,獎勵價值50元的商品.求
(1)某人抽獎一次,中一等獎的概率;
(2)某人抽獎一次,中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-x2+ax-4(a>0)對于x∈[1,3]恒小于或等于零.
(Ⅰ)求正數(shù)a的值所組成的集合A;
(Ⅱ)設關于x的方程f(x)+6=0的兩個根為x1、x2,若對任意x∈A及t∈[-1,1],不等式m2+tm-2+2
6
≥|x1-x|恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<
π
2
)在某一個周期內的圖象時,列表并填入的部分數(shù)據(jù)如下表:
xx1
1
3
x2
7
3
x3
ωx+ϕ0
π
2
π
2
Asin(ωx+ϕ)0
3
0-
3
0
(Ⅰ)請寫出上表的x1、x2、x3,并直接寫出函數(shù)的解析式;
(Ⅱ)將f(x)的圖象沿x軸向右平移
2
3
個單位得到函數(shù)g(x)的圖象,P、Q分別為函數(shù)g(x)圖象的最高點和最低點(如圖),求∠OQP的大小.

查看答案和解析>>

同步練習冊答案