某商場(chǎng)搞促銷抽獎(jiǎng)活動(dòng),規(guī)則如下:箱內(nèi)放有3枚白棋子和2枚黑棋子,顧客從中取出2枚棋子,如果兩位棋子都是黑棋子或者都是白棋子,則中獎(jiǎng).獎(jiǎng)勵(lì)方法如下:若取出2枚黑棋子則中一等獎(jiǎng),獎(jiǎng)勵(lì)價(jià)值100元的商品;若取出2枚白棋子中則中二等獎(jiǎng),獎(jiǎng)勵(lì)價(jià)值50元的商品.求
(1)某人抽獎(jiǎng)一次,中一等獎(jiǎng)的概率;
(2)某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.
考點(diǎn):n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:利用古典概型概率公式,即可求出結(jié)論.
解答: 解:(1)由題意,抽獎(jiǎng)一次,中一等獎(jiǎng)的概率為
C
2
2
C
2
5
=
1
10

(2)抽獎(jiǎng)一次,中獎(jiǎng)的概率為
C
2
2
C
2
5
+
C
2
3
C
2
5
=
2
5
點(diǎn)評(píng):本題考查概率的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知acosC-csinC=b.
(Ⅰ)若C=
π
6
,求∠B.
(Ⅱ)求sin(2C-A)+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}和{bn}滿足條件:a1=3,a2=2,b1=b2=2,b3=3,且數(shù)列{an-1}為等比數(shù)列,數(shù)列{bn+1-bn}為等差數(shù)列,
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)當(dāng)n≥3時(shí),求證:
1
b3-2
+
1
b4-2
+…+
1
bn-2
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
t
x
,有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)(0,
t
]上是減函數(shù),在[
t
,+∞)上是增函數(shù).
(1)已知h(x)=x+
4
x
,x∈[1,8],求函數(shù)h(x)的最大值和最小值.
(2)已知f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域.
(3)對(duì)于(2)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對(duì)于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為零的等差數(shù)列{an}中,a1=1且a1、a3、a13成等比數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=2an,求{bn}的前n項(xiàng)和為sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x∈Z|-2≤x≤6},集合A={-1,0,1},B={x∈U|2x+3≤x2}.
求(Ⅰ)A∩B;
(Ⅱ)∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(2+i)(1-2i)的實(shí)部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù)且對(duì)任意實(shí)數(shù)x恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)當(dāng)x∈[-2,0)時(shí),求f(x)的解析式;
(2)計(jì)算f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn);
③?m∈R,使f(x)=(m-1)•xm2-4m+3是冪函數(shù),且在(0,+∞)上遞減;
④若函數(shù)f(x)=|2x-1|,則?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
其中是假命題的
 
(填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案