已知過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F的一條直線與該雙曲線有且只有一個(gè)交點(diǎn),且交點(diǎn)的橫坐標(biāo)為2a,則該雙曲線的離心率為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的幾何性質(zhì),所給直線應(yīng)與雙曲線的一條漸近線y=
b
a
x平行,從而可求雙曲線的離心率
解答: 解:∵經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),
∴根據(jù)雙曲線的幾何性質(zhì),所給直線應(yīng)與雙曲線的一條漸近線y=
b
a
x平行,
∵交點(diǎn)的橫坐標(biāo)為2a,
∴交點(diǎn)的縱坐標(biāo)為
3
b,
b
a
=
3
b
2a-c
,
∴(2-
3
)a=c,
∴離心率e=2+
3

故答案為:2+
3
點(diǎn)評:本題考查雙曲線的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四面體OABC中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c,則下列命題:
①對棱中點(diǎn)連線長相等;        
②不含直角的底面△ABC是鈍角三角形;
③外接球半徑R=
1
2
a2+b2+c2
;
④直角頂點(diǎn)O在底面上的射影H是△ABC的外心;
⑤S2△BOC+S2△AOB+S2△AOC=S2△ABC
其中正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,…,2006中隨機(jī)選取三個(gè)數(shù),這三個(gè)數(shù)能構(gòu)成遞增等差數(shù)列的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心為(a,2),過拋物線y2=4x的焦點(diǎn),且與其準(zhǔn)線相切的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,CB切⊙O于點(diǎn)B,CD切⊙O于點(diǎn)D,交BA的延長線于點(diǎn)E,若DE=
3
,∠ADE=30°,則△BDC的外接圓的直徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線θ=
π
6
截圓ρ=2cos
π
6
(ρ∈R)所得的弦長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中,點(diǎn)E為AD中點(diǎn),連接BE、AC且交于點(diǎn)F.若
AF
=x
AB
+y
AE
(x、y∈R),則x:y=(  )
A、1:3B、2:3
C、1:2D、3:4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:p:
1
x2-x-6
<0,q:x2-2x-3<0,則¬p是¬q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行六面體ABCD-A1B1C1D1的棱長均為1,∠BAD=∠BAA1=∠DAA1=60°則對角線AC1的長為( 。
A、2
B、
6
C、3
D、2
3

查看答案和解析>>

同步練習(xí)冊答案