根據(jù)函數(shù)f(x)=log2x的圖象和性質(zhì)解決以下問(wèn)題:
(1)若f(a)>f(2),求a的取值范圍;
(2)y=log2(2x-1)在[2,14]上的最值.
解:函數(shù)y=log2x的圖象如圖.
(1)因?yàn)?i>y=log2x是增函數(shù),故f(a)>f(2),即log2a>log22,則a>2.所以a的取值范圍為(2,+∞).
(2)∵2≤x≤14,
∴3≤2x-1≤27,
∴l(xiāng)og23≤log2(2x-1)≤log227.
∴函數(shù)y=log2(2x-1)在[2,14]上的最小值為log23,最大值為log227.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:山東省淄博市2011屆高三第二次模擬數(shù)學(xué)理綜試題 題型:022
請(qǐng)閱讀下列材料:若兩個(gè)正實(shí)數(shù)a1,a2滿(mǎn)足
a12+a22=l,
那么a1+a2≤證明
:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因?yàn)閷?duì)一切實(shí)數(shù)x,恒有f(x)≥0,所以△≤0,從而得4(a1+a2)2-8≤0,所以
a1+a2≤.根據(jù)上述證明方法,若n個(gè)正實(shí)數(shù)滿(mǎn)足a12+a22+…+an2=1時(shí),你能得到的結(jié)論為________查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:湖南省衡陽(yáng)市八中2011屆高三第二次月考理科數(shù)學(xué)試題 題型:044
設(shè)直線(xiàn)l∶y=g(x),曲線(xiàn)S∶y=F(x).若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.
(1)已知函數(shù)f(x)=x-2sinx.求證:y=x+2為曲線(xiàn)f(x)的“上夾線(xiàn)”.
(2)觀(guān)察下圖:
根據(jù)上圖,試推測(cè)曲線(xiàn)S:y=mx-nsinx(n>0)的“上夾線(xiàn)”的方程,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:湖南省衡陽(yáng)市八中2011屆高三第二次月考文科數(shù)學(xué)試題 題型:044
設(shè)直線(xiàn)l∶y=g(x),曲線(xiàn)S∶y=F(x).若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.
(1)已知函數(shù)f(x)=x-2sinx.求證:y=x+2為曲線(xiàn)f(x)的“上夾線(xiàn)”.
(2)觀(guān)察下圖:
根據(jù)上圖,試推測(cè)曲線(xiàn)S:y=mx-nsinx(n>0)的“上夾線(xiàn)”的方程,并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com