【題目】已知函數(shù).
(1)證明:在上單調(diào)遞減,在上單調(diào)遞增;
(2)記函數(shù)的最小值為,求的最大值.
【答案】(1)證明見(jiàn)解析;
(2)的最大值為2.
【解析】
(1)由定義法,分別設(shè)和兩種不同情況時(shí),計(jì)算的正負(fù)即可;
(2)分別計(jì)算在和時(shí)的最小值,更小的那個(gè)即為函數(shù)的最小值,再分不同情況時(shí)將的函數(shù)解析式表示出,畫(huà)圖即可求出的最大值.
(1)設(shè),
又∵,
∴.
當(dāng)時(shí),,
∴.
當(dāng)時(shí),,
∴.
即在上單調(diào)遞減,在上單調(diào)遞增.
(2)由(1)得,在時(shí)的最小值為.
由∵當(dāng)時(shí),二次函數(shù)的對(duì)稱軸為,
由題意可得,時(shí),.
∴當(dāng)a≥0時(shí), 在(-∞,0]上遞減,故在(-∞,0]上的最小值為, f(x)在(0,+∞)上的最小值為f(1)=3-a;
∵,
∴.
當(dāng)a<0時(shí),f(x)在(-∞,0]上的最小值為f(a)=1,f(x)在(0,+∞)上的最小值為f(1)=3-a;
∵,
∴.
即,
所以M(a)在(-∞,0)上為常數(shù)函數(shù),在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù),作出M(a)的函數(shù)圖象如圖所示:
所以M(a)的最大值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在著名的漢諾塔問(wèn)題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤(pán),三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤(pán),較大的圓盤(pán)都在較小的圓盤(pán)下面.現(xiàn)把圓盤(pán)從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤(pán),且每次移動(dòng)后,每根柱上較大的圓盤(pán)不能放在較小的圓盤(pán)上面,規(guī)定一個(gè)圓盤(pán)從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤(pán)從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則__________,__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來(lái)自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來(lái)自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分別求適合下列條件的a的值.
(1)9∈(A∩B);(2){9}=A∩B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),在拋物線上且滿足,當(dāng)取最大值時(shí),點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)滿足:對(duì)于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數(shù)f (x)為“T函數(shù)”.
(I)試判斷函數(shù)f1(x)=x2與f2(x)=lg(x+1)是否是“T函數(shù)”,并說(shuō)明理由;
(Ⅱ)設(shè)f (x)為“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證:f (x0) =x0;
(Ⅲ)試寫(xiě)出一個(gè)“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個(gè)數(shù)最少.(只需寫(xiě)出結(jié)論)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com