4.求過(-2,3)點且斜率為2的直線的極坐標方程.

分析 由題意知,直線的直角坐標方程為y-3=2(x+2),設(shè)M(ρ,θ)為直線上任意一點,將x=ρcos θ,y=ρsin θ代入直角坐標方程即可得出極坐標方程.

解答 解:由題意知,直線的直角坐標方程為y-3=2(x+2),
即2x-y+7=0.
設(shè)M(ρ,θ)為直線上任意一點,
將x=ρcos θ,y=ρsin θ代入直角坐標方程2x-y+7=0,
得2ρcos θ-ρsin θ+7=0,這就是所求的極坐標方程.

點評 本題考查了點斜式、直角坐標方程化為極坐標方程,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知直線l:y=kx+1(k>0)關(guān)于直線y=x+1對稱的直線為l1,直線l,l1與橢圓E:$\frac{x^2}{4}+{y^2}$=1分別交于點A、M和A、N,記直線l1的斜率為k1
(Ⅰ)求k•k1的值;
(Ⅱ)當k變化時,試問直線MN是否恒過定點?若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)$f(x)=\left\{\begin{array}{l}-x+3a\\-{(x+1)^2}+2\end{array}\right.$$\begin{array}{l}x<0\\ x≥0\end{array}$,是R上的減函數(shù),則a的取值范圍是( 。
A.(0,1)B.$[\frac{1}{3}$,+∞)C.(0,$\frac{1}{3}]$D.(0,$\frac{2}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.圓ρ=4cosθ的圓心到直線tanθ=1的距離為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為$ρcos({θ-\frac{π}{3}})=1$,M,N分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求M,N的極坐標;
(2)設(shè)MN的中點為P,求以P為圓心,且過原點的圓的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t+1\\ y=t+4\end{array}$(t為參數(shù)),在以原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=$\frac{{\sqrt{3}}}{{\sqrt{1+2{{cos}^2}θ}}}$.
(1)寫出直線l一般式方程與曲線C的直角坐標的標準方程;
(2)設(shè)曲線C上的點到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.一個總體中有600個個體,隨機編號為001,002,…,600,利用系統(tǒng)抽樣方法抽取容量為24的一個樣本,總體分組后在第一組隨機抽得的編號為006,則在編號為051~125之間抽得的編號為(  )
A.056,080,104B.054,078,102C.054,079,104D.056,081,106

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在平面直角坐標系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=cosβ}\\{y=1+sinβ}\end{array}\right.$(β為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線C1和曲線C2的極坐標方程;
(2)已知射線l1:θ=α($\frac{π}{6}$<α<$\frac{π}{2}$),將射線l1順時針方向旋轉(zhuǎn)$\frac{π}{6}$得到l2:θ=α-$\frac{π}{6}$,且射線l1與曲線C1交于兩點,射線l2與曲線C2交于O,Q兩點,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在極坐標系中,曲線C:sinθ=|cosθ|上不同的兩點M,N到直線l:ρcosθ-2ρsinθ=2的距離為$\sqrt{5}$,則|MN|=( 。
A.$2\sqrt{5}$B.$4\sqrt{5}$C.8D.16

查看答案和解析>>

同步練習冊答案