【題目】(本題滿分12分)
今年十一黃金周,記者通過隨機詢問某景區(qū)110名游客對景區(qū)的服務(wù)是否滿意,得到如下的列聯(lián)表:
性別與對景區(qū)的服務(wù)是否滿意 單位:名
男 | 女 | 總計 | |
滿意 | 50 | 30 | 80 |
不滿意 | 10 | 20 | 30 |
總計 | 60 | 50 | 110 |
(1)從這50名女游客中按對景區(qū)的服務(wù)是否滿意采取分層抽樣,抽取一個容量為5的樣本,問樣本中滿意與不滿意的女游客各有多少名?
(2)從(1)中的5名女游客樣本中隨機選取兩名作深度訪談,求選到滿意與不滿意的女游客各一名的概率;
(3)根據(jù)以上列聯(lián)表,問有多大把握認為“游客性別與對景區(qū)的服務(wù)滿意”有關(guān)
注:
臨界值表:
P() | 0.05 | 0.025 | 0.010 | 0.005 |
3.841 | 5.024 | 6.635 | 7.879 |
【答案】解:(1)樣本中滿意的女游客為3名,樣本中不滿意的女游客為2名。
(2)。
(3)有99%的把握認為:該景區(qū)游客性別與對景區(qū)的服務(wù)滿意有關(guān)。
【解析】
試題(I)每個個體被抽取的概率為,根據(jù)分層抽樣,即可得樣本中滿意的女游客,樣本中不滿意的女游客的人數(shù);
(II)確定從這5名游客中隨機選取兩名的等可能事件的個數(shù),其中事件A“選到滿意與不滿意的女游客各一名”包含6個基本事件,即可求得概率;
(III)由列聯(lián)表,計算K2的值,根據(jù)P(K2>6.635)=0.010,即可得到結(jié)論.
解:(1)根據(jù)分層抽樣可得:樣本中滿意的女游客為名,樣本中不滿意的女游客為名。
(2)記樣本中對景區(qū)的服務(wù)滿意的3名女游客分別為,對景區(qū)的服務(wù)不滿意的2名女游客分別為。從5名女游客中隨機選取兩名,共有10個基本事件,分別為:,,,,;其中事件A:選到滿意與不滿意的女游客各一名包含了6個基本事件,分別為:,,
所以所求概率。
(3)假設(shè):該景區(qū)游客性別與對景區(qū)的服務(wù)滿意無關(guān),則應(yīng)該很小。
根據(jù)題目中列聯(lián)表得:
由可知:有99%的把握認為:該景區(qū)游客性別與對景區(qū)的服務(wù)滿意有關(guān)。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意的,存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 ()的一個焦點點為橢圓內(nèi)一點,若橢圓上存在一點,使得,則橢圓的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,則不等式f(x)·g(x)<0的解集是( )
A. (-3,0)∪(3,+∞)
B. (-3,0)∪ (0,3)
C. (-∞,-3)∪(3,+∞)
D. (-∞,-3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,于點,將沿折起,使,連接,得到如圖所示的幾何體.
(1)求證:平面平面;
(2)若點在線段上,直線與平面所成角的正切值為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準備對現(xiàn)有的一條穿城公路MON進行分流,已知穿城公路MON自西向東到達城市中心后轉(zhuǎn)向方向,已知∠MON=,現(xiàn)準備修建一條城市高架道路L,L在MO上設(shè)一出入口A,在ON上設(shè)一出口B,假設(shè)高架道路L在AB部分為直線段,且要求市中心與AB的距離為10km.
(1)求兩站點A,B之間的距離;
(2)公路MO段上距離市中心30km處有一古建筑群C,為保護古建筑群,設(shè)立一個以C為圓心,5km為半徑的圓形保護區(qū).因考慮未來道路AB的擴建,則如何在古建筑群和市中心之間設(shè)計出入口A,才能使高架道路及其延伸段不經(jīng)過保護區(qū)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com