【題目】某地有三家工廠,分別位于矩形ABCD的頂點A,B,及CD的中點P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BOOP,設(shè)排污管道的總長為ykm

I)按下列要求寫出函數(shù)關(guān)系式:

設(shè),將表示成的函數(shù)關(guān)系式;

設(shè),將表示成的函數(shù)關(guān)系式.

)請你選用(I)中的一個函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長度最短.

【答案】I

)選擇函數(shù)模型P位于線段AB的中垂線上且距離AB處.

【解析】

I由條件可知PQ垂直平分AB,,

,又,所以

,則,所以,

所以所求的函數(shù)關(guān)系式為

)選擇函數(shù)模型

,又,所以

時,,的減函數(shù);

時,,的增函數(shù).

所以當

P位于線段AB的中垂線上且距離AB處.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,底面為菱形,底面,點上的一個動點,,.

(1)當時,求證:;

(2)當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點P2,1).

1)求橢圓C的方程,并求其離心率;

2)過點Px軸的垂線l,設(shè)點A為第四象限內(nèi)一點且在橢圓C上(點A不在直線l上),點A關(guān)于l的對稱點為A',直線A'PC交于另一點B.設(shè)O為原點,判斷直線AB與直線OP的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.

(1)求直線l的普通方程和曲線的直角坐標方程;

(2)已知點的極坐標為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為

1)求乙至多擊目標2次的概率;

2)記甲擊中目標的次數(shù)為,求的概率分布列及數(shù)學期望;

3)求甲恰好比乙多擊中目標2次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,已知底面ABCD是邊長為1的正方形,側(cè)面PAD⊥平面ABCD,PAPD,PA與平面PBC所成角的正弦值為。

1)求側(cè)棱PA的長;

2)設(shè)EAB中點,若PA≥AB,求二面角BPCE的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個六邊形點陣,它的中心是1個點(第1層),第2層每邊有2個點, 3層每邊有3個點,,依此類推,若一個六邊形點陣共有217個點,那么它的層數(shù)為(

A.10B.9C.8D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:

x

2

5

8

9

11

y

12

10

8

8

7

1)求y關(guān)于x的回歸方程;

2)判定yx之間是正相關(guān)還是負相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額;

附:①.

②參考數(shù)據(jù)如下:

i

1

2

12

4

24

2

5

10

25

50

3

8

8

64

64

4

9

8

81

72

5

11

7

121

77

35

45

295

287

查看答案和解析>>

同步練習冊答案