【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).

(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)的極坐標(biāo)為,的值.

【答案】(1)見(jiàn)解析;(2).

【解析】分析:(1)利用代入消參法把直線的參數(shù)方程互為普通方程,利用,把曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;

(2)把直線的參數(shù)方程化為標(biāo)準(zhǔn)形式,代入曲線的直角坐標(biāo)方程,利用韋達(dá)定理表示即可.

詳解:(1) 的普通方程為: ;

,

即曲線的直角坐標(biāo)方程為:

(2)解法一: 在直線上,直線的參數(shù)方程為(為參數(shù)),代入曲線的直角坐標(biāo)方程得 ,即,

.

解法二:

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,PA= ,連接CE并延長(zhǎng)交AD于F

(1)求證:AD⊥平面CFG;
(2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以x(單位:t,100≤x≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).

(1)將T表示為x的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級(jí)蔬菜大棚”,為了解大棚的面積與年利潤(rùn)之間的關(guān)系,隨機(jī)抽取了其中的7個(gè)大棚,并對(duì)當(dāng)年的利潤(rùn)進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對(duì)比表:

由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且有很強(qiáng)的線性相關(guān)關(guān)系.

(1)求關(guān)于的線性回歸方程;(結(jié)果保留三位小數(shù));

(2)小明家的“超級(jí)蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤(rùn)為多少;

(3)另外調(diào)查了近5年的不同蔬菜畝平均利潤(rùn)(單位:萬(wàn)元),其中無(wú)絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請(qǐng)分析種植哪種蔬菜比較好?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°, ,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°

(1)若 ,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,0),則函數(shù)f(2x+1)的定義域?yàn)椋?)
A.(﹣1,1)
B.
C.(﹣1,0)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosxsin2x,下列結(jié)論中錯(cuò)誤的是(
A.y=f(x)的圖象關(guān)于(π,0)中心對(duì)稱
B.y=f(x)的圖象關(guān)于x= 對(duì)稱
C.f(x)的最大值為
D.f(x)既是奇函數(shù),又是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對(duì)數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點(diǎn).
(1)求異面直線EF,AD所成角的余弦值;
(2)點(diǎn)M在線段A1D上, =λ.若CM∥平面AEF,求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案