【題目】給出下列說法:①方程表示的圖形是一個點;②命題,則為真命題;③已知雙曲線的左右焦點分別為,過右焦點被雙曲線截得的弦長為4的直線有3;④已知橢圓上有兩點,,若點是橢圓上任意一點,且,直線,的斜率分別為,,則為定值.

其中說法正確的序號是________.

【答案】①②④

【解析】

根據(jù)曲線方程的幾何意義、命題和逆否命題真假相同,圓錐曲線的基本性質(zhì),逐個選項進行判斷,即可求得答案.

①由,故表示點,故①正確;

②逆否命題為,則為真,根據(jù)原命題和逆否命題真假相同,則原命題為真,故②正確;

③根據(jù)異支焦點弦實軸最短為4,同支焦點弦通徑最短為4,滿足條件的直線只有2條,故③錯誤;

④根據(jù)兩點斜率公式:

可得:,

相減可得,

故④正確;

故答案為: ①②④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,設.

1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;

2)若的最小正周期為,且當時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:①過點的直線方程一定可以表示為的形式;②過點且在x,y軸截距相等的直線方程是;③過點且與直線垂直的直線方程是;④設點不在直線上,則過點M且與直線l平行的直線方程是;⑤點到直線的距離不小于2.以上命題中,正確的序號是( )

A.②③⑤B.④⑤C.①④⑤D.①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,且.

1)求數(shù)列的通項公式;

2)設數(shù)列的前n項和為,求;

3)判斷數(shù)列中是否存在三項成等差數(shù)列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足, ,(N*).

(Ⅰ)寫出的值;

(Ⅱ)設,求的通項公式;

(Ⅲ)記數(shù)列的前項和為,求數(shù)列的前項和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果不是等差數(shù)列,但若,使得,那么稱為“局部等差”數(shù)列.已知數(shù)列的項數(shù)為4,記事件:集合,事件為“局部等差”數(shù)列,則條件概率( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”江南梅雨的點點滴滴都流潤著濃洌的詩情每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南Q鎮(zhèn)年梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

“梅實初黃暮雨深”假設每年的梅雨天氣相互獨立,求Q鎮(zhèn)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率;

“江南梅雨無限愁”在Q鎮(zhèn)承包了20畝土地種植楊梅的老李也在犯愁,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量與降雨量之間的關系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為,請你幫助老李排解憂愁,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?需說明理由

降雨量

畝產(chǎn)量

500

700

600

400

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上的值域為,則稱函數(shù)是該定義域上的和諧函數(shù)”.

1)判斷函數(shù)是不是和諧函數(shù),并說明理由;

2)若函數(shù)和諧函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC的外接圓⊙O的半徑為5,CE垂直于⊙O所在的平面,BD∥CE,CE4,BC6,且BD1,.

1)求證:平面AEC⊥平面BCED;

2)試問線段DE上是否存在點M,使得直線AM與平面ACE所成角的正弦值為?若存在,確定點M的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案