【題目】已知函數(shù)圖象相鄰兩條對(duì)稱軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱則函數(shù)的圖象( )

A. 關(guān)于直線對(duì)稱 B. 關(guān)于直線對(duì)稱

C. 關(guān)于點(diǎn)對(duì)稱 D. 關(guān)于點(diǎn)對(duì)稱

【答案】D

【解析】

由函數(shù)y=f(x)的圖象與性質(zhì)求出T、ωφ,寫(xiě)出函數(shù)y=f(x)的解析式,再求f(x)的對(duì)稱軸和對(duì)稱中心.

由函數(shù)y=f(x)圖象相鄰兩條對(duì)稱軸之間的距離為,可知其周期為4π,

所以ω==,所以f(x)=sin(x+φ);

將函數(shù)y=f(x)的圖象向左平移個(gè)單位后,得到函數(shù)y=sin[(x+)+φ]圖象.

因?yàn)榈玫降膱D象關(guān)于y軸對(duì)稱,所以×+φ=kπ+,k∈Z,即φ=kπ+,k∈Z;

又|φ|<,所以φ=,所以f(x)=sin(x+),

x+=kπ,k∈Z,解得x=2k,k∈Z;

k=0時(shí),得f(x)的圖象關(guān)于點(diǎn)(-,0)對(duì)稱

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用合適的方法表示下列集合,并說(shuō)明是有限集還是無(wú)限集.

1)到A、B兩點(diǎn)距離相等的點(diǎn)的集合

2)滿足不等式的集合

3)全體偶數(shù)

4)被5除余1的數(shù)

520以內(nèi)的質(zhì)數(shù)

6

7)方程的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓上動(dòng)點(diǎn),點(diǎn)為原點(diǎn).

1)若,求證:為定值;

2)點(diǎn),若,求證:直線過(guò)定點(diǎn);

3)若,求證:直線為定圓的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某海濱城市位于海岸處,在城市的南偏西20°方向有一個(gè)海面觀測(cè)站,現(xiàn)測(cè)得與處相距31海里的處,有一艘豪華游輪正沿北偏西40°方向,以40海里/小時(shí)的速度向城市直線航行,30分鐘后到達(dá)處,此時(shí)測(cè)得、間的距離為21海里.

)求的值;

)試問(wèn)這艘游輪再向前航行多少分鐘方可到達(dá)城市

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為兩條異面直線,為兩個(gè)平面,,,,則下列結(jié)論中錯(cuò)誤的序號(hào)是______.

至少與,中一條相交; 至多與,中一條相交;

至少與,中一條平行; 必與,中一條相交,與另一條平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)從名學(xué)生中選出人去參加一項(xiàng)活動(dòng),若甲、乙兩名同學(xué)不能同時(shí)入選,則共有______種不同的選派方案.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐S—ABCD中,∠SDA=2∠SAD=90°,∠BAD+∠ADC=180°,AB=CD,點(diǎn)F是線段

SA上靠近點(diǎn)A的一個(gè)三等分點(diǎn),AC與BD相交于E.

(1)在線段SB上作出點(diǎn)G,使得平面EFG∥平面SCD,請(qǐng)指明點(diǎn)G的具體位置,并用陰影部分表示平面EFG,不必說(shuō)明平面EFG∥平面SCD的理由;

(2)若SA=SB=2,AB=AD=BD=,求點(diǎn)F到平面SCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)當(dāng)時(shí),求的極值;

2)求函數(shù)的單調(diào)區(qū)間;

3)若2個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若的極小值為,求的值;

(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案