【題目】 由經(jīng)驗(yàn)得知,在某商場(chǎng)付款處排隊(duì)等候付款的人數(shù)及概率如下表

排隊(duì)人數(shù)

0

1

2

3

4

5人以上

概率

0.1

0.16

0.3

0.3

0.1

0.04

(1)至多有2人排隊(duì)的概率是多少?

(2)至少有2人排隊(duì)的概率是多少?

【答案】(1)0.56 (2)0.74

【解析】

(1)“至多2人排隊(duì)”是“沒有人排隊(duì)”,“1人排隊(duì)”,“2人排隊(duì)”三個(gè)事件的和事件,三個(gè)事件彼此互斥,利用互斥事件的概率公式求出至多2人排隊(duì)的概率.

(2)“至少2人排隊(duì)”與“少于2人排隊(duì)”是對(duì)立事件;“少于2人排隊(duì)”是“沒有人排隊(duì)”,“1人排隊(duì)”二個(gè)事件的和事件,二個(gè)事件彼此互斥,利用互斥事件的概率公式求出“少于2人排隊(duì)”的概率;再利用對(duì)立事件的概率公式求出)“至少2人排隊(duì)”的概率.

(1)記沒有人排隊(duì)為事件A,1人排隊(duì)為事件B.

2人排隊(duì)為事件C,A、B、C彼此互斥.

P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56

(2)記至少2人排隊(duì)為事件D,少于2人排隊(duì)為事件A+B,那么事件D與A+B是對(duì)立事件,則

P(D)=P()=1﹣(P(A)+P(B))=1﹣(0.1+0.16)=0.74.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義在R上的函數(shù),對(duì)任意實(shí)數(shù)x,有f(1﹣x)=x2﹣3x+3.

(1)求函數(shù)的解析式;

(2)若函數(shù)在g(x)=f(x)﹣(1+2m)x+1(mR)在上的最小值為﹣2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)元,未租出的車每輛每月需要維護(hù)費(fèi).

1)當(dāng)每輛車的月租金定為元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

10

乙班

30

合計(jì)

110

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到9號(hào)或10號(hào)的概率.

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,且圖象關(guān)于直線對(duì)稱.

(1)求的解析式;

(2) 若函數(shù)的圖象與直線上只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定直線l:y=x+3,定點(diǎn)A(2,1),以坐標(biāo)軸為對(duì)稱軸的橢圓C過點(diǎn)A且與l相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)橢圓的弦AP,AQ的中點(diǎn)分別為M,N,若MN平行于l,則OM,ON斜率之和是否為定值?若是定值,請(qǐng)求出該定值;若不是定值請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.設(shè),則“”是“”的必要而不充分條件

D.設(shè),則“”是“”的必要 不 充 分 條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)集A由實(shí)數(shù)構(gòu)成:且滿足:若,則

(1)若,試證明A中還有另外兩個(gè)元素;

(2)集合A是否為雙元素集合,并說明理由;

(3)若集合A是有限集,求集合A中所有元素的積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)已知函數(shù)

)若函數(shù)在其定義域上是增函數(shù),求實(shí)數(shù)的取值范圍;

)當(dāng)時(shí),求出的極值;

)在()的條件下,若內(nèi)恒成立,試確定的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案