【題目】已知函數(shù)的最小正周期為,且圖象關(guān)于直線對(duì)稱.
(1)求的解析式;
(2) 若函數(shù)的圖象與直線在上只有一個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或.
【解析】
分析:(1)根據(jù)二倍角公式以及配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質(zhì)確定的解析式;(2)先化簡,再同一坐標(biāo)系中作出y=sin和y=a的圖象,根據(jù)圖像確定實(shí)數(shù)的取值范圍.
詳解:(1) f(x)=sinωx·cosωx-cos2ωx+=sin2ωx- (1+cos2ωx)+=sin+1.∵ 函數(shù)f(x)的最小正周期為π,∴ =π,即ω=±1,
∴ f(x)=sin+1.
① 當(dāng)ω=1時(shí),f(x)=sin+1,∴ f=sin+1不是函數(shù)的最大值或最小值,
∴ 其圖象不關(guān)于x=對(duì)稱,舍去.
② 當(dāng)ω=-1時(shí),f(x)=-sin+1,
∴ f=-sin+1=0是最小值,
∴ 其圖象關(guān)于x=對(duì)稱.
故f(x)的解析式為f(x)=1-sin.
(2) y=1-f(x)=sin,在同一坐標(biāo)系中作出y=sin和y=a的圖象:
由圖可知,直線y=a在a∈或a=1時(shí),兩曲線只有一個(gè)交點(diǎn),∴ a∈或a=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題一定正確的是( )
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),向量 =(1,7), =(5,1), =(2,1),點(diǎn)M為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng) 取最小值時(shí),求向量 的坐標(biāo);
(2)在點(diǎn)M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),已知時(shí),.
(1)畫出偶函數(shù)的圖像;
(2)指出函數(shù)的單調(diào)遞增區(qū)間及值域;
(3)若直線與函數(shù)恰有個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 由經(jīng)驗(yàn)得知,在某商場付款處排隊(duì)等候付款的人數(shù)及概率如下表
排隊(duì)人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
(1)至多有2人排隊(duì)的概率是多少?
(2)至少有2人排隊(duì)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex與g(x)=ax+b的圖象交于P(x1 , y1),Q(x2 , y2)兩點(diǎn). (Ⅰ)求函數(shù)h(x)=f(x)﹣g(x)的最小值;
(Ⅱ)且PQ的中點(diǎn)為M(x0 , y0),求證:f(x0)<a<y0 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某測試團(tuán)隊(duì)為了研究“飲酒”對(duì)“駕車安全”的影響,隨機(jī)選取100名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進(jìn)行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗(yàn)數(shù)據(jù)分別列于表1和表2. 表1
停車距離d(米) | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 26 | a | b | 8 | 2 |
表2
平均每毫升血液酒精含量x毫克 | 10 | 30 | 50 | 70 | 90 |
平均停車距離y米 | 30 | 50 | 60 | 70 | 90 |
已知表1數(shù)據(jù)的中位數(shù)估計(jì)值為26,回答以下問題.
(Ⅰ)求a,b的值,并估計(jì)駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計(jì)算y關(guān)于x的回歸方程 ;
(Ⅲ)該測試團(tuán)隊(duì)認(rèn)為:駕駛員酒后駕車的平均“停車距離”y大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的3倍,則認(rèn)定駕駛員是“醉駕”.請(qǐng)根據(jù)(Ⅱ)中的回歸方程,預(yù)測當(dāng)每毫升血液酒精含量大于多少毫克時(shí)為“醉駕”?
(附:對(duì)于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線 的斜率和截距的最小二乘估計(jì)分別為 , .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD為正方形,平面AED⊥平面ABCD,AB= EA= ED,EF∥BD
(I)證明:AE⊥CD
(II)在棱ED上是否存在點(diǎn)M,使得直線AM與平面EFBD所成角的正弦值為 ?若存在,確定點(diǎn)M的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com