程序框圖如圖,如果程序運(yùn)行的結(jié)果為s=132,那么判斷框中可填入(  )
A、k≤10B、k≥10
C、k≤11D、k≥11
考點(diǎn):程序框圖
專題:圖表型,算法和程序框圖
分析:程序框圖的功能是求S=1×12×11×…,由程序運(yùn)行的結(jié)果為S=132,得終止程序時(shí),k=10,從而求出判斷框的條件.
解答: 解:由題意知,程序框圖的功能是求S=1×12×11×…,
∵程序運(yùn)行的結(jié)果為S=132,
∴終止程序時(shí),k=10,
∴判斷框的條件是k≤10(或k<11),
故選:A.
點(diǎn)評:本題是當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,解題的關(guān)鍵是判斷程序框圖功能及判斷終止程序的k值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3x,x∈[-1,1]
9
2
-
3x
2
,x∈(1,3)
則f(-log32)=
 
;若f(f(t))∈[0,1],則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|a2x2-1|+ax(a∈R,且a≠0).
(Ⅰ)當(dāng)a<0時(shí),若函數(shù)y=f(x)-c恰有x1,x2,x3,x4四個(gè)零點(diǎn),求x1+x2+x3+x4的值;
(Ⅱ)若不等式f(x)≥|x|對一切x∈[b,+∞)都成立,求a2b2+(b-
1
2
2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象與x軸有四個(gè)交點(diǎn),且滿足f(2+t)=f(2-t),則這四個(gè)交點(diǎn)的橫坐標(biāo)之和x1+x2+x3+x4等于(  )
A、8B、4C、2D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知(
3
sinB-cosB)(
3
sinC-cosC)=4cosBcosC.
(Ⅰ) 求角A的大小;
(Ⅱ) 若sinB=psinC,且△ABC是銳角三角形,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用直接插入順序法將數(shù)據(jù)6插入序列{1,3,5,7,9,11,13}中需要作大小比較的次數(shù)為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=
-7x
x2+x+1

(1)求f(-4)的值;
(2)求當(dāng)x<0時(shí),f(x)的解析式;
(3)試證明函數(shù)y=f(x)(x≥0)在[0,1]上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+(b+1)x+3a是定義在[a-1,2a]的偶函數(shù),則實(shí)數(shù)a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,且0≤f(1)=f(2)=f(3)<10,那么( 。
A、0≤c<10B、-6≤c<4
C、c>4D、c≤-6

查看答案和解析>>

同步練習(xí)冊答案