已知數(shù)列滿足,.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:(其中).

(1)見(jiàn)解析;(2);(3)見(jiàn)解析.

解析試題分析:(1)首先由求出,然后時(shí),構(gòu)造函數(shù),即可證明在條件下數(shù)列是等比數(shù)列,將時(shí)的值代入也符合,即證;(2)先由(1)得到,然后寫(xiě)出的通項(xiàng)公式,根據(jù)等比數(shù)列前項(xiàng)和公式求出;(3)求出數(shù)列的通項(xiàng)公式,再由累加法求其前項(xiàng)和為,再判斷的關(guān)系.
試題解析:(1)證明:由,,
當(dāng)時(shí),,即
所以是首項(xiàng)為,公比為的等比數(shù)列,
時(shí),也符合,所以數(shù)列是等比數(shù)列;    .5分
(2),由(I)得,所以.
所以
數(shù)列的前n項(xiàng)和

.                      10分
(3)證明:
 
所以,數(shù)列的前n項(xiàng)和為


因?yàn)楫?dāng)時(shí),,所以                    14分
考點(diǎn):1、函數(shù)的構(gòu)造;2、等比數(shù)列的性質(zhì);3、等比數(shù)列的前項(xiàng)和;4、累加法求數(shù)列的前項(xiàng)和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,為常數(shù),,且成公比不等于1的等比數(shù)列.
(1)求的值;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,
(1)設(shè),求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和,函數(shù)對(duì),數(shù)列滿足.
(1)分別求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,是數(shù)列的前項(xiàng)和,若存在正實(shí)數(shù),使不等式對(duì)于一切的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是單調(diào)遞增的等差數(shù)列,首項(xiàng),前項(xiàng)和為;數(shù)列是等比數(shù)列,首項(xiàng)
(1)求的通項(xiàng)公式;
(2)令的前20項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)已知數(shù)列的通項(xiàng)公式,記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,數(shù)列{bn}的前n項(xiàng)和為Tn,試比較Tn的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

知數(shù)列的首項(xiàng)項(xiàng)和為,且
(1)證明:數(shù)列是等比數(shù)列;
(2)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù),并比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列,首項(xiàng)a 1 =3且2a n+1="S"  n?S n-1 (n≥2).
(1)求證:{}是等差數(shù)列,并求公差;
(2)求{a n }的通項(xiàng)公式;
(3)數(shù)列{an }中是否存在自然數(shù)k0,使得當(dāng)自然數(shù)k≥k 0時(shí)使不等式a k>a k+1對(duì)任意大于等于k的自然數(shù)都成立,若存在求出最小的k值,否則請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案