知數(shù)列的首項(xiàng)項(xiàng)和為,且
(1)證明:數(shù)列是等比數(shù)列;
(2)令,求函數(shù)在點(diǎn)處的導(dǎo)數(shù),并比較的大小.

(1)詳見解析;(2); 當(dāng)時,; 當(dāng)時,;當(dāng)時,.

解析試題分析:(1)先利用的遞推關(guān)系得到的遞推關(guān)系式,再通過構(gòu)造新數(shù)列,并結(jié)合等比數(shù)列的定義來證明是等比數(shù)列;(2)先求導(dǎo)得到的表達(dá)式,然后分組求和,一部分是用錯位相減法,另一部分是用等差數(shù)列求和公式,最后通過作差比較的大小情況.
試題解析:(1)由已知,可得兩式相減得
從而    4分
當(dāng)所以所以從而
  5分
故總有
從而即數(shù)列是等比數(shù)列;  6分
(2)由(1)知,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dc/0/4ecsa3.png" style="vertical-align:middle;" />所以
從而=
=

錯位相減得,
      10分
由上=
=12
當(dāng)時,①式=0所以
當(dāng)時,①式=12所以
當(dāng)時,又由函數(shù)
所以即①從而  14分
考點(diǎn):1、數(shù)列通項(xiàng)公式的求法,2、數(shù)列前項(xiàng)和的求法,3、函數(shù)的求導(dǎo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張.為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)構(gòu)成數(shù)列,每年發(fā)放的電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項(xiàng)公式;
(2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?



     
       
   

3
     
        
   
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和;
(3)設(shè),數(shù)列的前項(xiàng)和為,求證:(其中).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

表示等差數(shù)列的前項(xiàng)的和,且 
(1)求數(shù)列的通項(xiàng);
(2)求和…… 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且=-n+20n,n∈N
(Ⅰ)求通項(xiàng);
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等比數(shù)列都在函數(shù)的圖象上。
(1)求r的值;
(2)當(dāng);
(3)若對一切的正整數(shù)n,總有的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:,的前n項(xiàng)和為
(1)求;
(2)令=(),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:,  ,,前項(xiàng)和為的數(shù)列滿足:,又
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,點(diǎn)均在直線上.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),試證明數(shù)列為等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案