已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|=   
【答案】分析:把方程(x2-2x+m)(x2-2x+n)=0化為x2-2x+m=0,或x2-2x+n=0,設設是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2=+根據(jù)等差中項的性質可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m-n|即可.
解答:解:方程(x2-2x+m)(x2-2x+n)=0可化為
x2-2x+m=0①,或x2-2x+n=0②,
是方程①的根,
則將代入方程①,可解得m=
∴方程①的另一個根為
設方程②的另一個根為s,t,(s≤t)
則由根與系數(shù)的關系知,s+t=2,st=n,
又方程①的兩根之和也是2,
∴s+t=+
由等差數(shù)列中的項的性質可知,
此等差數(shù)列為,s,t,,
公差為[-]÷3=,
∴s=,t=
∴n=st=
∴,|m-n|=|-|=
故答案為:
點評:本題主要考查了等差數(shù)列的性質.考查了學生創(chuàng)造性思維和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為
1
4
的等差數(shù)列,則|m-n|等于( 。
A、1
B、
3
4
C、
1
2
D、
3
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為
14
的等差數(shù)列,則|m-n|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|等于  ( 。

    A.1                 B.             C.            D.

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第26課時):第三章 數(shù)列-數(shù)學鞏固練習(解析版) 題型:選擇題

已知方程(x2-2x+m)(x2-2x+n)=0的四個根組成一個首項為的等差數(shù)列,則|m-n|等于( )
A.1
B.
C.
D.

查看答案和解析>>

同步練習冊答案