【題目】現(xiàn)計(jì)劃用兩張鐵絲網(wǎng)在一片空地上圍成一個梯形養(yǎng)雞場,
,
,已知
兩段是由長為
的鐵絲網(wǎng)折成,
兩段是由長為
的鐵絲網(wǎng)折成.設(shè)上底
的長為
,所圍成的梯形面積為
.
(1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;
(2)當(dāng)x為何值時,養(yǎng)雞場的面積最大?最大面積為多少?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點(diǎn),雙曲線
上有一點(diǎn)
(m>0),點(diǎn)P在軸上的射影恰好是雙曲線C的右焦點(diǎn),過點(diǎn)P作雙曲線C兩條漸近線的平行線,與兩條漸近線的交點(diǎn)分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,為了控制質(zhì)量,質(zhì)量控制工程師要在產(chǎn)品出廠前對產(chǎn)品進(jìn)行檢驗(yàn).現(xiàn)有(
且
)份產(chǎn)品,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)
次;(2)混合檢驗(yàn),將這
份產(chǎn)品混合在一起作為一組來檢驗(yàn).若檢測通過,則這
份產(chǎn)品全部為正品,因而這
份產(chǎn)品只要檢驗(yàn)一次就夠了;若檢測不通過,為了明確這
份產(chǎn)品究竟哪幾份是次品,就要對這
份產(chǎn)品逐份檢驗(yàn),此時這
份產(chǎn)品的檢驗(yàn)次數(shù)總共為
次.假設(shè)在接受檢驗(yàn)的樣本中,每份樣本的檢驗(yàn)結(jié)果是正品還是次品都是獨(dú)立的,且每份樣本是次品的概率為
.
(1)如果,采用逐份檢驗(yàn)方式進(jìn)行檢驗(yàn),求檢測結(jié)果恰有兩份次品的概率;
(2)現(xiàn)對份產(chǎn)品進(jìn)行檢驗(yàn),運(yùn)用統(tǒng)計(jì)概率相關(guān)知識回答:當(dāng)
和
滿足什么關(guān)系時,用混合檢驗(yàn)方式進(jìn)行檢驗(yàn)可以減少檢驗(yàn)次數(shù)?
(3)①當(dāng)(
且
)時,將這
份產(chǎn)品均分為兩組,每組采用混合檢驗(yàn)方式進(jìn)行檢驗(yàn),求檢驗(yàn)總次數(shù)
的數(shù)學(xué)期望;
②當(dāng)(
,且
,
)時,將這
份產(chǎn)品均分為
組,每組采用混合檢驗(yàn)方式進(jìn)行檢驗(yàn),寫出檢驗(yàn)總次數(shù)
的數(shù)學(xué)期望(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的直角坐標(biāo)方程,并求
時直線
的普通方程;
(2)直線和曲線
交于兩點(diǎn)
,點(diǎn)
的直角坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和父母都喜愛《中國好聲音》這欄節(jié)目,年
月
日晚在鳥巢進(jìn)行中國好聲音終極決賽,四強(qiáng)選手分別為李榮浩戰(zhàn)隊(duì)的邢晗銘,那英戰(zhàn)隊(duì)的斯丹曼簇,王力宏戰(zhàn)隊(duì)的李芷婷,庾澄慶戰(zhàn)隊(duì)的陳其楠,決賽后四位選手相應(yīng)的名次為
、
、
、
,某網(wǎng)站為提升娛樂性,邀請網(wǎng)友在比賽結(jié)束前對選手名次進(jìn)行預(yù)測.現(xiàn)用
、
、
、
表示某網(wǎng)友對實(shí)際名次為
、
、
、
的四位選手名次做出的一種等可能的預(yù)測排列,
是該網(wǎng)友預(yù)測的名次與真實(shí)名次的偏離程度的一種描述.
(1)求的分布列及數(shù)學(xué)期望;
(2)按(1)中的結(jié)果,若小明家三人的排序號與真實(shí)名次的偏離程度都是,計(jì)算出現(xiàn)這種情況的概率(假定小明家每個人排序相互獨(dú)立).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別是
,
,離心率為
,直線
被橢圓C截得的線段長為
.
(1)求橢圓C的方程;
(2)過點(diǎn)且斜率為k的直線l交橢圓C于A,B兩點(diǎn),交x軸于P點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為M,直線BM交x軸于Q點(diǎn).求證:
(O為坐標(biāo)原點(diǎn))為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點(diǎn)
在以
為直徑的半圓弧上(
不與
,
重合),
為線段
的中點(diǎn),現(xiàn)將正方形
沿
折起,使得平面
平面
.
(1)證明:平面
.
(2)若,當(dāng)三棱錐
的體積最大時,求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
,
,且
,
,
,
分別為棱
,
,
,
的中點(diǎn).
(I)證明:直線與
共面;
(Ⅱ)證明:平面平面
;并試寫出
到平面
的距離(不必寫出計(jì)算過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com